アルゴリズムの設計と解析

教授: 黄 潤和 (W4022)

rhuang@hosei.ac.jp

SA: 広野 史明 (A4/A8)

fumiaki.hirono.5k@stu.hosei.ac.jp

Contents (L15 – TSP problem)

- TSP problem
- Nearest Neighbor Method
- APPROX-TSP-TOUR methon
- Review

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

What is travel salesman problem?

TSP:

- A Salesman wishes to travel around a given set of cities, and return to the beginning, covering the smallest total distance.
- → Create a TSP Tour around all cities
 - (1) Return to the beginning
 - (2) No condition to return to the beginning.
 - It can still be regarded as a TSP by connecting the beginning city and the end city to a 'dummy' city at zero distance

dummy' city

Two classifications of TSP

- A route returning to the beginning is known as a
- →Hamiltonian Circuit
- A route not returning to the beginning is known as a
- \rightarrow Hamiltonian Path

Some cases

Printed Circuit Board 2392 cities 1987 Padberg and Rinaldi

USA Towns of 500 or more population 13509 cities 1998 Applegate, Bixby, Chvátal and Cook

Electronic Circuits:

www.shutterstock.com · 2603201

The smallest total distance?

Sweden 24978 Cities 2004 Applegate, Bixby, Chvátal, Cook and Helsgaun

Solutions:(1) Try every possibility? \rightarrow (n-1)!, 24977 possibilities(2) Optimizing Methods(3) Heuristic Methods \rightarrow may not optimal

The Nearest Neighbor Method (Heuristic)

- 1. Start Anywhere
- 2. Go to Nearest Unvisited City
- 3. Continue until all Cities visited
- 4. Return to Beginning

The Nearest Neighbour Method (Starting at City 1)

Remove Crossovers

Remove Crossovers

Outline of an APPROX-TSP-TOUR

(1)
 compute a MST (minimum spanning tree)
 whose weight is a lower bound
 on the length of an optimal TSP tour.

(2)
 use MST to build a tour
 whose cost is no more than twice that of
 MST's weight as long as the cost function satisfies
 triangle inequality.

Operation of APPROX-TSP-TOUR Let root be a in following given set of points (graph)

Exercises 13

EX 13

(1) What is a TSP problem?
(2) Refer the city connection graph in Fig 1, start from the node A,
to draw a MST
to an optimal TSP tour

Fig1. City connection graph

