アルゴリズムの設計と解析

教授: 黄 潤和 (W4022)

rhuang@hosei.ac.jp

SA: 広野 史明 (A4/A8)

fumiaki.hirono.5k@stu.hosei.ac.jp

Contents (L14 – All-pairs Shortest Path)

- All-pairs shortest paths
- Floyd-Warshall algorithm
- Matrix-multiplication algorithm

MIT video lecture

http://videolectures.net/mit6046jf05_demaine_lec19/

All-pairs shortest paths

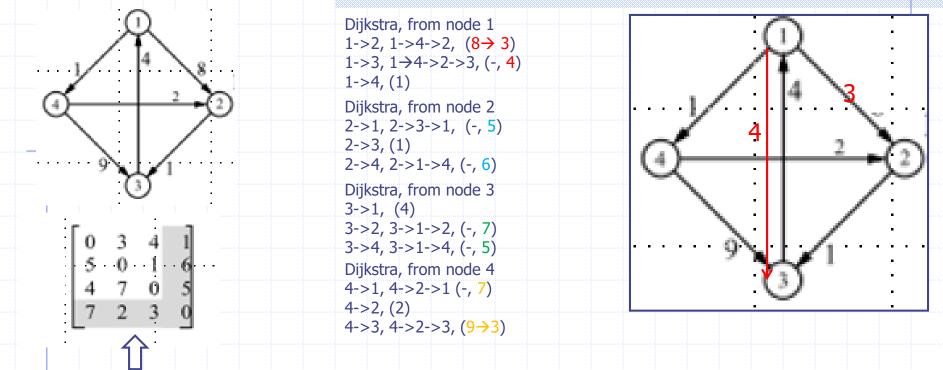
Run Dijkstra's algorithm for each vertex

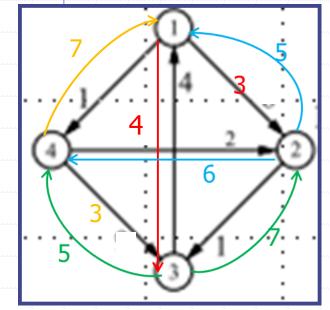
Dijkstra Algorithm is a single source shortest path (for nonnegative edge weights)

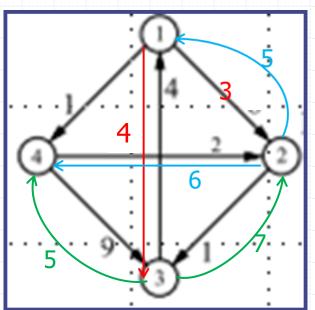
If we would like to make all-pairs shortest paths

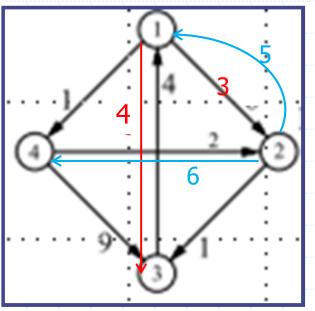
Very simple idea is to use Dijkstra's algorithm (Q: how many times to run Dijkstra algorithm?)

Take an example,









Dijkstra algorithm's time complexity

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$

Time Complexity:

-Dijkstra's original algorithm does not use a min-priority queue and runs in time $O(|V|^2)$. -The implementation based on a min-priority queue implemented by a Fibonacci heap and running in $O(|E| + |V| \log |V|)$

All-pairs shortest paths

using Dijkstra algorithm

Very simple idea is to use Dijkstra's algorithm (run Dijkstra algorithm for | // |times)

Time complexity

If not using priority queue, it is $O(|V|^3)$

If using priority queue, it can become

 $O(|E| + |V| \log(|V|)) \rightarrow Run |V| times \rightarrow O(|V||E| + |V|^2 \log(|V|))$

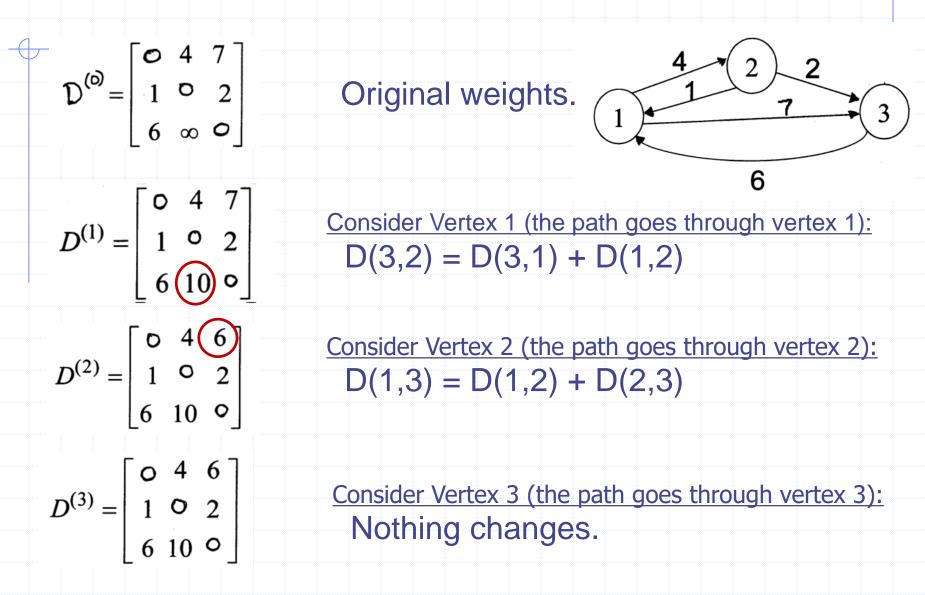
Floyd-Warshall Algorithm

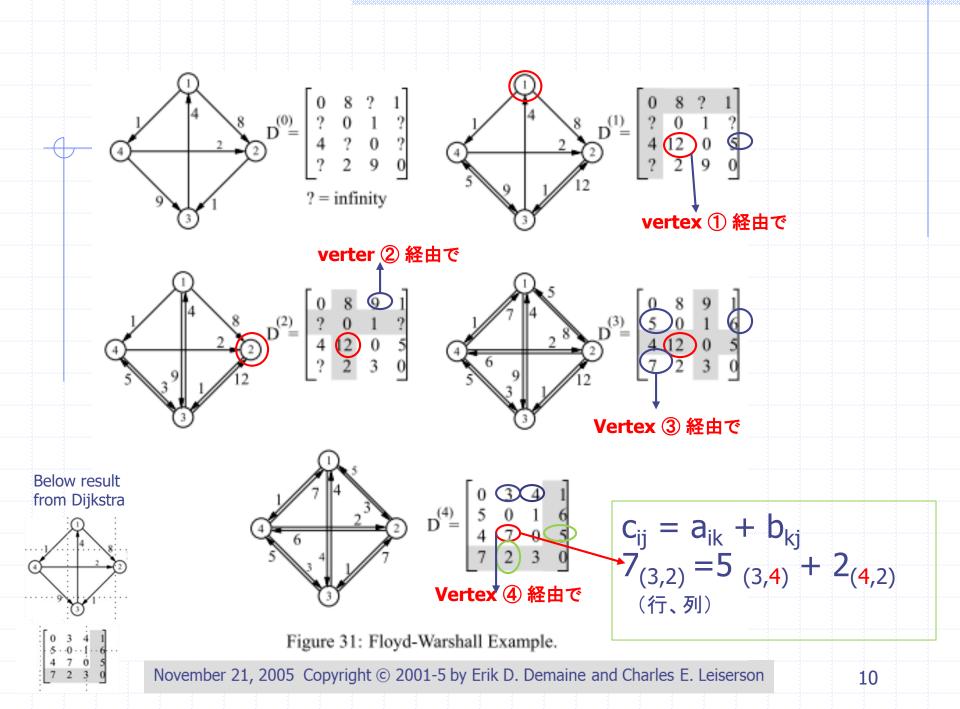
- Floyd-Warshall Algorithm
 runs in the same time complexity O(|V|³)
- **BUT**, Dijkstra's doesn't work with negative-weight edges.

Introduction of Floyd-Warshall algorithm

- The problem: find the shortest path between every pair of vertices of a graph
- The graph: may contain negative edges but no negative cycles
- A representation: a weight matrix where W(i,j)=0 if i=j. W(i,j)=∞ if there is no edge between i and j. W(i,j)="weight of edge"
 - How does it work? Let us see some examples

Floyd Warshall Algorithm - Example





Floyd Warshall Algorithm

- Looking at this example, we can come up with the following algorithm:
 - Let D store the matrix with the initial graph edge information initially, and update D with the calculated shortest paths.

```
For k=1 to n {
   For i=1 to n {
      For j=1 to n
      D[i,j] = min(D[i,j],D[i,k]+D[k,j])
```

}

The final D matrix will store all the shortest paths.
Looks like a matrix multiplication?

Compute matrix multiplication (1)

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$ Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"? $c_{ij} = \min_k \{a_{ik} + b_{kj}\}.$ $\sum_{D}^{\infty} (m-1)$ "x" A. 10 November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson 12

Compute matrix multiplication (2)

Consequently, we can compute

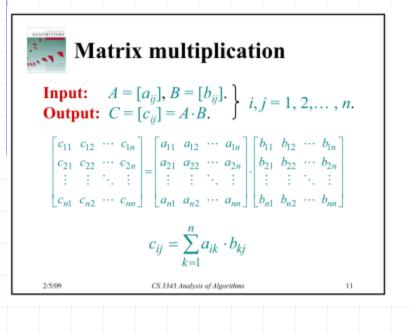
 $D^{(1)} = D^{(0)} \cdot A = A^{1}$ $D^{(2)} = D^{(1)} \cdot A = A^{2}$ \vdots $D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$

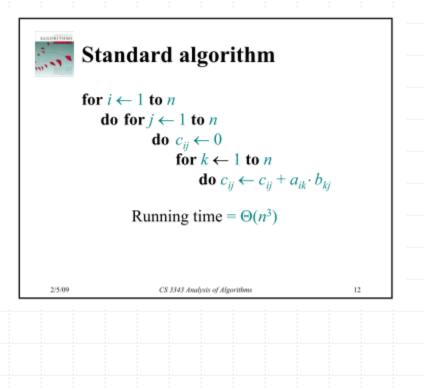
yielding $D^{(n-1)} = (\delta(i, j))$. The final D matrix will store all the shortest paths.

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. Is it good?

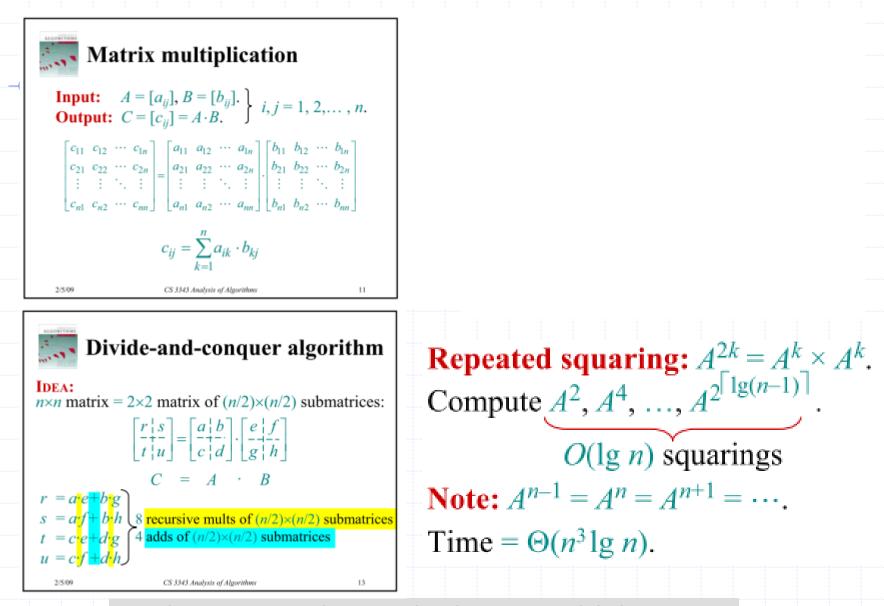
n times of matrix multiplication, right?

Standard algorithm for multiplication





Improved algorithm for multiplication



All-pairs shortest path problem formal description

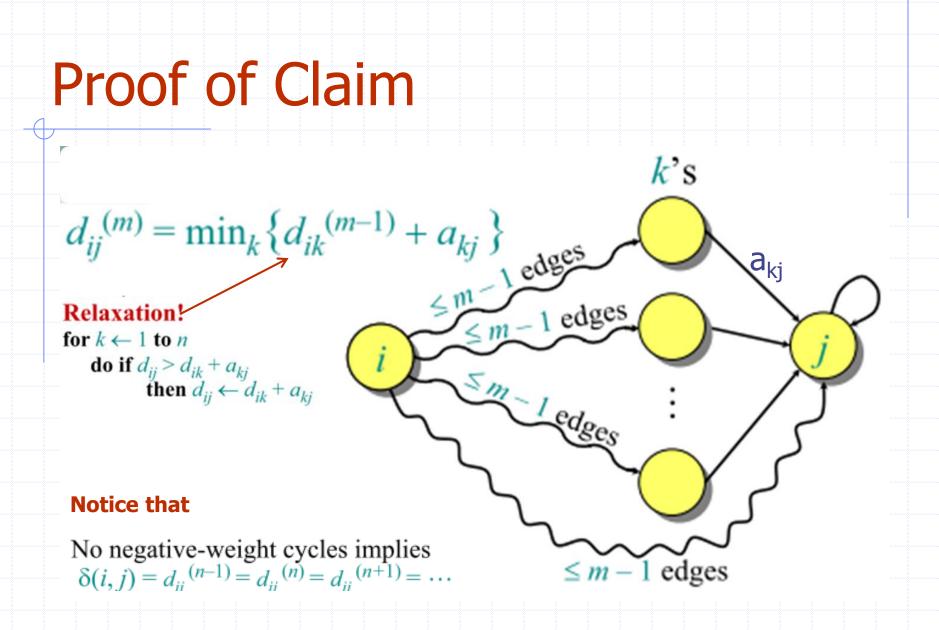
Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* that uses at most *m* edges.

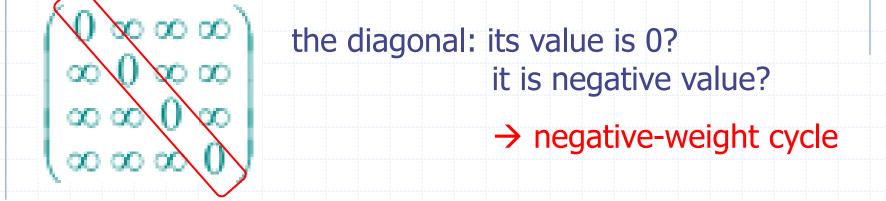
Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, ..., n - 1, \\ d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \}. \end{cases}$



How to detect negative-weight cycle?



To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Input and output

Input repreentation:
We assume that we have a weight matrix
 $W = (W_{ij})_{(i,j) \text{ in } E}$ $W = (W_{ij})_{(i,j) \text{ in } E}$ $w_{ij} = 0$
 $w_{ij} = w(i,j)$ if i=j
if $i\neq j$ and (i,j) in E (has edge from i to j)
if $i\neq j$ and (i,j) not in E (no edge from i to j)

Output representation: If the graph has n vertices, we return a distance matrix (d_{ij}),

Where, d_{ij} the length of the path from i to j.

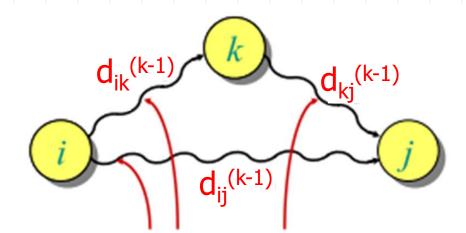
Intermediate Vertices

Without loss of generality, we will assume that $V = \{1, 2, ..., n\}$, i.e., that the vertices of the graph are numbered from 1 to n.

Given a path $p=(v_1, v_2, ..., v_m)$ in the graph, we will call the vertices v_k with index k in $\{2, ..., m-1\}$ the intermediate vertices of p.

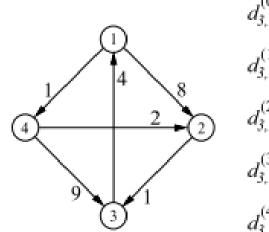
Conclusion

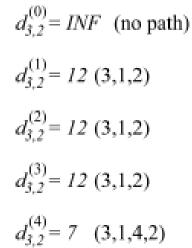
Therefore, we can conclude that $d_{ii}^{(k)} = \min\{d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\}$

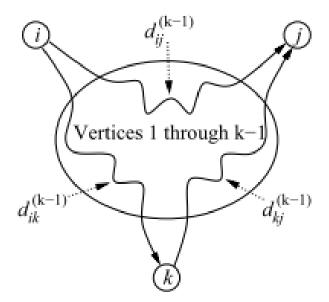


intermediate vertices in $\{1, 2, ..., k\}$

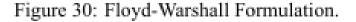
An example: take a look $d_{3,2}^{(k)}$







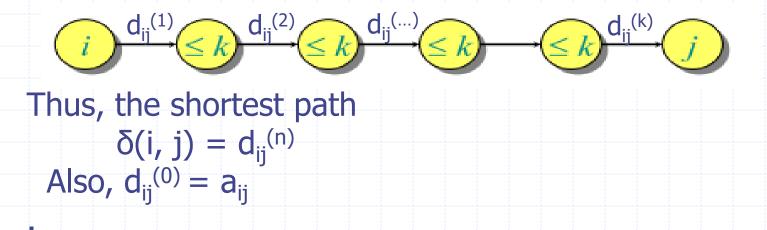
(a)



Key Definition

- The key to the Floyd-Warshall algorithm is the following definition:
- Let $d_{ij}^{(k)}$ denote the length of the shortest path from i to j such that all intermediate vertices are contained in the set $\{1,...,k\}$.

We have the following remark



Recursive Formulation

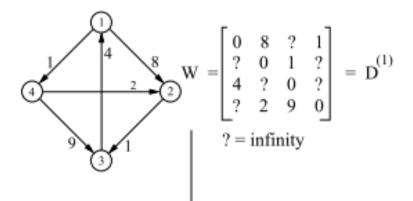
If we do not use intermediate nodes, i.e., when k=0, then $d_{ij}^{(0)} = W_{ij}$ If k>0, then $d_{ij}^{(k)} = \min_k \{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \}$

The Floyd-Warshall Algorithm

Floyd-Warshall(W) n = # of rows of W; $D^{(0)} = W;$ for k = 1 to n do for i = 1 to n do for j = 1 to n do $d_{ij}^{(k)} = \min_{k} \{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \};$ do if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{jk}^{(k-1)}$ then $d_{ij}^{(k)} \leftarrow d_{ik}^{(k-1)} + d_{jk}^{(k-1)}$ end-do; end-do; end-do; return D⁽ⁿ⁾;

An example:

http://www.cs.umd.edu/~meesh/351/mount/lectures/lect24-floyd-warshall.pdf



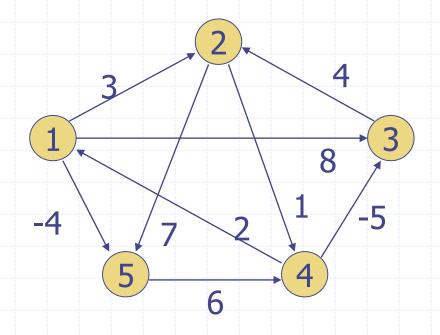
Work in class: Please continue to get the final updated graph and matrix. (do not p10)

Figure 29: Shortest Path Example.

CMSC 251

Work in class

Please write matrices: D⁽⁰⁾, D⁽¹⁾, D⁽²⁾, D⁽³⁾, D⁽⁴⁾, D⁽⁵⁾,



The Floyd-Warshall Algorithm – Pseudo-code

```
Floyd Warshall(int n, int W[1..n, 1..n]) {
   array d[1..n, 1..n]
   for i = 1 to n do {
                                                   // initialize
       for j = 1 to n do {
           d[i,j] = W[i,j]
           pred[i,j] = null
                                                   // use intermediates {1..k}
   for k = 1 to n do
       for i = 1 to n do
                                                   // ...from i
            for j = 1 to n do
                                                   // ...to j
                if (d[i,k] + d[k,j]) < d[i,j]) 
                    d[i,j] = d[i,k] + d[k,j] // new shorter path length
                    pred[i,j] = k
                                                   // new path is through k
   return d
                                                   // matrix of final distances
                                                                          28
```

```
The Floyd-Warshall Algorithm in Java (1)
                                                                   G
http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module9/examples/
 // Now iterate over k.
 for (int k=0; k<numVertices; k++) {
   // Compute Dk[i][j], for each i,j
   for (int i=0; i<numVertices; i++) {</pre>
      for (int j=0; j<numVertices; j++) {</pre>
        if (i != j)
          // D k[i][j] = min ( D k-1[i][j], D k-1[i][k] + D k-1[k][j].
          if (Dk minus one[i][j] < Dk minus one[i][k] + Dk minus one[k][j])
            Dk[i][j] = Dk minus one[i][j];
          else
            Dk[i][j] = Dk minus one[i][k] + Dk minus one[k][j];
                                              public static void main (String[] argv)
                                                // A test case.
                                                  double[][] adjMatrix = {
    // Now store current Dk into D k-1
                                                    \{0, 1, 7, 0, 5, 0, 1\},\
   for (int i=0; i<numVertices; i++) {
                                                    \{1, 0, 1, 0, 0, 7, 0\},\
      for (int j=0; j<numVertices; j++) {
                                                    \{7, 1, 0, 1, 7, 0, 0\},\
        Dk minus one[i][j] = Dk[i][j];
                                                     [0, 0, 1, 0, 1, 0, 0],
                                                    \{5, 0, 7, 1, 0, 1, 0\},\
                                                     0, 7, 0, 0, 1, 0, 1
                                                    \{1, 0, 0, 0, 0, 1, 0\}.
   // end-outermost-for
                                                  };
                                                  int n = adjMatrix.length;
                                                  FloydWarshall fwAlg = new FloydWarshall ();
                                                  fwAlg.initialize (n);
                                                  fwAlg.allPairsShortestPaths (adjMatrix);
                                                  // Print paths ... (not shown) ...
```

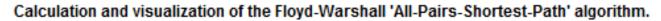
The Floyd-Warshall Algorithm in Java (2)

```
http://algs4.cs.princeton.edu/44sp/FloydWarshall.java.html
// initialize distances using edge-weighted digraph's
for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v)) {
        distTo[e.from()][e.to()] = e.weight();
        edgeTo[e.from()][e.to()] = e;
    // in case of self-loops
    if (distTo[v][v] >= 0.0) {
       distTo[v][v] = 0.0;
        edgeTo[v][v] = null;
// Floyd-Warshall updates
for (int i = 0; i < V; i++) {
    // compute shortest paths using only 0, 1, ..., i as intermediate vertices
    for (int v = 0; v < V; v++) {
       if (edgeTo[v][i] == null) continue; // optimization
        for (int w = 0; w < V; w++) {
            if (distTo[v][w] > distTo[v][i] + distTo[i][w]) {
                distTo[v][w] = distTo[v][i] + distTo[i][w];
                edgeTo[v][w] = edgeTo[i][w];
       if (distTo[v][v] < 0.0) return; // negative cycle
// is there a negative cycle?
public boolean hasNegativeCycle()
    for (int v = 0; v < distTo.length; v++)
         if (distTo[v][v] < 0.0) return true;
    return false;
```

30

Visualization of the Floyd-Warshall Algorithm

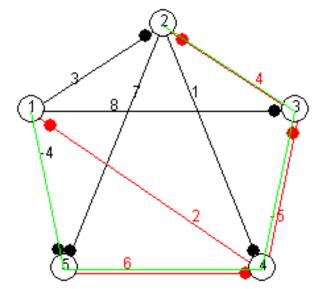
http://www.pms.ifi.lmu.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization



(c) Jeffrey J. Gosper, Brunel Univeristy, 1998

View Shortest path between: 1 to 2 👻 Dist: 1

PATHS AVAILABLE



Adjacency matrix (999 means no connection)

(only integer weights allowed)

0	1	-3	2	-4	Floyd-Warshall
3	0	-4	1	-1	About
7	4	0	5	3	Update Diagram
2	-1	-5	0	-2	Reset Values
8	5	1	6	0	Single Step

http://homepage3.nifty.com/asagaya_avenue/trial/discussion/nis hikawa_net.pdf 31

Exercise 14

Review for Final exam