
アルゴリズムの設計と解析

教授： 黄 潤和 （W4022）
rhuang@hosei.ac.jp

SA： 広野 史明 （A4/A8）
fumiaki.hirono.5k@stu.hosei.ac.jp

Contents (L14 – All-pairs Shortest Path)

• All-pairs shortest paths

• Floyd-Warshall algorithm

• Matrix-multiplication algorithm

MIT video lecture

http://videolectures.net/mit6046jf05_demaine_lec19/

2

http://videolectures.net/mit6046jf05_demaine_lec19/

3

All-pairs shortest paths
Run Dijkstra’s algorithm for each vertex

Dijkstra Algorithm is a single source shortest path
(for nonnegative edge weights)

If we would like to make all-pairs shortest paths

Very simple idea is to use Dijkstra’s algorithm
(Q: how many times to run Dijkstra algorithm?)

Take an example,

4

Dijkstra, from node 1
1->2, 1->4->2, (8 3)
1->3, 14->2->3, (-, 4)
1->4, (1)

3

4
Dijkstra, from node 2
2->1, 2->3->1, (-, 5)
2->3, (1)
2->4, 2->1->4, (-, 6)

5

6

Dijkstra, from node 3
3->1, (4)
3->2, 3->1->2, (-, 7)
3->4, 3->1->4, (-, 5)

7
5

Dijkstra, from node 4
4->1, 4->2->1 (-, 7)
4->2, (2)
4->3, 4->2->3, (93)

7

3

4
44

5

Dijkstra algorithm’s time complexity

Time Complexity:
-Dijkstra's original algorithm does not use a min-priority queue and runs in time
O(|V|2).
-The implementation based on a min-priority queue implemented by a Fibonacci
heap and running in

6

Very simple idea is to use Dijkstra’s algorithm
(run Dijkstra algorithm for |V |times)

Time complexity

If not using priority queue, it is O(|V|3)

If using priority queue, it can become

O(|E| + |V| log(|V|))  Run |V |times  O(|V||E| + |V|2 log(|V|))

All-pairs shortest paths
using Dijkstra algorithm

Floyd-Warshall Algorithm

Floyd-Warshall Algorithm
- runs in the same time complexity O(|V|3)

BUT, Dijkstra’s doesn’t work with negative-weight edges.

8

Introduction of Floyd-Warshall algorithm

• The problem: find the shortest path between every
pair of vertices of a graph

• The graph: may contain negative edges but
no negative cycles

• A representation: a weight matrix where
W(i,j)=0 if i=j.
W(i,j)=if there is no edge between i and j.
W(i,j)=“weight of edge”

How does it work?
Let us see some examples

Floyd Warshall Algorithm - Example

Consider Vertex 3 (the path goes through vertex 3):

Nothing changes.

Consider Vertex 2 (the path goes through vertex 2):

D(1,3) = D(1,2) + D(2,3)

Consider Vertex 1 (the path goes through vertex 1):

D(3,2) = D(3,1) + D(1,2)

Original weights.

10

cij = aik + bkj

7(3,2) =5 (3,4) + 2(4,2)

（行、列）

vertex ①経由で

verter ②経由で

Vertex ③経由で

Vertex ④経由で

Below result
from Dijkstra

Floyd Warshall Algorithm

Looking at this example, we can come up with the
following algorithm:

 Let D store the matrix with the initial graph edge
information initially, and update D with the calculated
shortest paths.

For k=1 to n {

For i=1 to n {

For j=1 to n

D[i,j] = min(D[i,j],D[i,k]+D[k,j])

}

}

 The final D matrix will store all the shortest paths.
 Looks like a matrix multiplication?

12

Compute matrix multiplication (1)

similar?

13

Compute matrix multiplication (2)

Is it good?

n times of matrix multiplication, right?

?

14

Standard algorithm for multiplication

15

Improved algorithm for multiplication

16

All-pairs shortest path problem formal description

17

Proof of Claim

Notice that

akj

18

How to detect negative-weight cycle?

the diagonal: its value is 0?
it is negative value?

 negative-weight cycle

19

Input repreentation:
We assume that we have a weight matrix

W= (wij) (i,j) in E

wij= 0 if i=j
wij= w(i,j) if ij and (i,j) in E (has edge from i to j)

wij=  if ij and (i,j) not in E (no edge from i to j)

Input and output

By Andreas Klappenecker

Output representation:
If the graph has n vertices, we return a distance

matrix (dij),

Where, dij the length of the path from i to j.

Intermediate Vertices

Without loss of generality, we will assume
that V={1,2,…,n}, i.e., that the vertices
of the graph are numbered from 1 to n.

Given a path p=(v1, v2,…, vm) in the
graph, we will call the vertices vk with
index k in {2,…,m-1} the intermediate
vertices of p.

20

Conclusion

Therefore, we can conclude that

dij
(k) = min{dij

(k-1) , dik
(k-1) + dkj

(k-1)}

dik
(k-1)

dkj
(k-1)

dij
(k-1)

22CMSC 251

An example: take a look d3,2
(k)

Key Definition

The key to the Floyd-Warshall algorithm
is the following definition:
Let dij

(k) denote the length of the shortest path from i to
j such that all intermediate vertices are contained in the
set {1,…,k}.

We have the following remark

23

dij
(1) dij

(2) dij
(k)dij

(…)

Thus, the shortest path
δ(i, j) = dij

(n)

Also, dij
(0) = aij

.

Recursive Formulation

If we do not use intermediate nodes, i.e.,
when k=0, then

dij
(0) = wij

If k>0, then

dij
(k) = mink{dij

(k-1) , dik
(k-1) + dkj

(k-1)}

24
By Andreas Klappenecker

The Floyd-Warshall Algorithm
Floyd-Warshall(W)

n = # of rows of W;

D(0) = W;

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

dij
(k) = mink{dij

(k-1) , dik
(k-1) + dkj

(k-1)};

end-do;

end-do;

end-do;

return D(n);
25

By Andreas Klappenecker

do if dij
(k-1)>dik

(k-1)+djk
(k-1)

then dij
(k)
 dik

(k-1)+djk
(k-1)

relaxation

26
CMSC 251

An example:
http://www.cs.umd.edu/~meesh/351/mount/lectures/lect24-floyd-warshall.pdf

Work in class:
Please continue to get the final updated graph and
matrix. (do not p10)

http://www.cs.umd.edu/~meesh/351/mount/lectures/lect24-floyd-warshall.pdf

27

Work in class

1

5 4

3

2

3 4

7-4

8

1 -52

6

Please write matrices: D(0), D(1), D(2), D(3), D(4), D(5),

28

The Floyd-Warshall Algorithm – Pseudo-code

29

The Floyd-Warshall Algorithm in Java (1)

http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module9/examples/FloydWarshall.java

http://www.seas.gwu.edu/~simhaweb/cs151/lectures/module9/examples/FloydWarshall.java

30

The Floyd-Warshall Algorithm in Java (2)

http://algs4.cs.princeton.edu/44sp/FloydWarshall.java.html

http://algs4.cs.princeton.edu/44sp/FloydWarshall.java.html

31

Visualization of the Floyd-Warshall Algorithm

http://www.pms.ifi.lmu.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization

http://homepage3.nifty.com/asagaya_avenue/trial/discussion/nis
hikawa_net.pdf

http://www.pms.ifi.lmu.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization
http://homepage3.nifty.com/asagaya_avenue/trial/discussion/nishikawa_net.pdf

32

Exercise 14

Review for Final exam

