1V

ZILTY X LDERE CEHT

Hix: = BEfD (W4022)

rhuang@hosei.ac.jp

SA: 5% SEBEA (A4/A8)

fumiaki.hirono.5k@stu.hosei.ac.jp

AN

N

COntentS (L].O — Review Graph)

Basis of Graph
Depth-First Search

N

Basis of Graph

Graphs 557
= Definition TE &
= Applications TI)r—i3y
= Terminology FAzE
= Properties E &
s ADT ADT

Data structures for graphs 7 5701 D T—2E&E
= Adjacency list [E#EUXE
= Adjacency matrix [EiE< k)X
Other Concepts
= Subgraph HJJ57
= Connectivity EfE T
= Spanning trees and forests £ K. £ %

Graph
957

N

L/
A graph is a pair (V, E), where
= Vs a set of nodes, called vertices (&fi. JE&)
= E is a collection of pairs of vertices, called edges(Tv, 3. #%)

m Vertices and edges are positions and store elements
#® Example:
= A vertex represents an airport and stores the three-letter airport code
B ZEBLIXFTRIN-ZDEELI—

= An edge represents a flight route between two airports and stores the mileage
of the route

Tyo 20NEERBMDEWETDIERE

Edge Types
TyoRALT

N

L

Directed edge BRIV
= ordered pair of vertices (u,v)
m first vertex u is the origin
= second vertex v is the destination
= e.g., aflight

Undirected edge #EmRI v
= unordered pair of vertices (u,v)
= e.g., a flight route

Directed graph BRY 57
= all the edges are directed
= e.g., route network

Undirected graph @145 57
= all the edges are undirected
= e.g., flight network

flight
QORD 45 1205~ PVD

849
QRD— o @D

Applications
7T r—o3ay

N

Electronic circuits
& [a] B
= Printed circuit board
= Integrated circuit

Transportation networks
EERYRT—Y
= Highway network
= Flight network

Computer networks
avEa—4aRykI—2
= Local area network
= Internet
x Web

Databases T—4~XN—X

= Entity-relationship diagram

ERF A7 5L

zlm

cS.brown.edu

|5 [600000] m|
att.net

brown.edu

| 8] rossems] (351
gwest.net

Terminology

4

=5

JAHA

N

L

@

&

® & @ @

End vertices (or endpoints) of
an edge #£m

= U and V are the endpoints of
a

Edges incident on a vertex
EDES

= 3, d, and b are incident on V
Adjacent vertices [

= UandV are adjacent
Degree of a vertex E

= X has degree 5
Parallel edges /sZL LTy

= h and i are parallel edges
Self-loop JL—7

= jis a self-loop

Terminology (cont.)

=5

4

JAHA

N

L

Path

= sequence of alternating
vertices and edges

= begins with a vertex
= ends with a vertex

= each ecége is preceded and
followed by its endpoints

Simple path
= path such that all its vertices

and edges are distinct
[FoEYLz. AURA TELWIR

#® Examples
s P,=(V,b,X,h,Z) is a simple path
= P,=(U,cW,eXgq,Y,fW,dV)isa
path that is not simple

Terminology (cont.)

=5
71JaA

N

@ Cycle 4L

= Circular sequence of alternating
vertices and edges

= each edge is preceded and
followed by its endpoints
Simple cycle
= cycle such that all its vertices
and edges are distinct
#® Examples
= C;=(V,bXg,)Y,f,W,cU,a,)isa
simple cycle
= C=(U,cW,eXqg,Y,fWdV,a,)is
a cycle that is not simple

Properties
fF# %

/\

Property 1

2, deg(v) = 2m
Proof: each endpoint is
counted twice
Property 2
In an undirected graph
with no self-loops and

Notation
n number of vertices
m number of edges
deg(v) degree of vertex v

Example
m N=4
mM=6

no multiple edges

m<n(n-1)/2

Proof: each vertex has
degree at most (n— 1)

m deg(v) =3

10

Main Methods of the Graph ADT

N

FSTADTD A AR

\Vertices and edges # Update methods
= are positions = insertVertex(o)
= Store elements = insertEdge(v, w, 0)
& Accessor methods = insertDirectedEdge(v, w, 0)
= aVertex() = removeVertex(v)
= incidentEdges(v) = removeEdge(e)
= endVertices(e) # Generic methods
= isDirected(e) = humVertices()
= origin(e) = humEdges()
= destination(e) = Vvertices()
= opposite(v, e) = edges()

= areAdjacent(v, w)

11

Adjacency List

N

fdz!) A+

An adjacency list is an array of lists. Each individual list shows what
vertices a given vertex is adjacent to. gAML, VR RDERSI LAY FE
FHRDUANME, FEEL-IERICEREITHTERZRLTLNS,

An example: The graph

The adjacency list
Vertex List containing adjacent vertices

A B>C->D
B A->D

C A

D A->B

12

Adjacency Matrix

BEE< RO R

An adjacency matrix is a two-dimensional array in which the elements
indicate whether an edge is present between two vertices. If a graph
has n vertices, the adjacency matrix is an n-by-n matrix.

An example: The graph

N

a b c d e f
al0 0 1 1 0 0 al—= ¢ - d
b0 0 1 0 0 1 b|—= ¢ - f
c|1 1 0 0 1 O c|l—= a = b — e
df{1 0 0 0 1 0 d|—= a — e
e|0 0 1T 1 0 1 e|l—> ¢ - d > f
fLO 1 0 0 1 0 fl—= b — e
(a) (b)

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a.
13

Subgraphs
BT

N

A subgraph S of a graph
G is a graph such that

m The edges of S are a
subset of the edges of G

m The vertices of S are a
subset of the vertices of G

A spanning subgraph of
G is a subgraph that
contains all the vertices
of G

gwéiﬁ%rsﬁa\xzéf@ﬁﬁ’éﬁ

Spanning subgraph

14

N

Connectivity
= ifE

L

A graph is connected if
there is a path between
every pair of vertices
BT ST ETOEMNBEL
[CEEfSNn TS,

A connected component
of a graph G is a
maximal connected

subgraph of G
EFEEPALIE T S TGDEHRRD
HITJS5T7THS,

Connected graph

O——=O0

Non connected graph with two
connected components

15

Trees and Forests
REFE

N

A (free) tree is an
ur?directed graph T such
that

s T is connected E#ELTLVS
= T has no cycles #1ounmin

This definition of tree is
different from the one of
a rooted tree
A forest is an undirected
graph without cycles

The connected
components of a forest

are trees
FDERBEALITITARTK

Tree

Forest

16

Spanning Trees and Forests

£

AR EEE K

N

L

A spanning tree of a

connected graph is a
spanning subgraph that is a
tree

A spanning tree is not unique
unless the graph is a tree
’73775‘7I<’C-EL\BEU@E,E7M¢
1D TIXELY,

Spanning trees have
applications to the design of
communication networks

i e Bl e D2 SV ARl
~DF|H

@ A spanning forest of a graph

is @ spanning subgraph that is
a forest

Spanning tree

17

Depth-First Search
ESEBEER

18

Outline

N

Depth-first search
= Algorithm
= Example
= Properties
= Analysis

Applications of DFS
= Path finding
m Cycle finding

RSBIEIER

7L X L

11

ek

ST
DFSO7 7 r—i3y
R ERR
HAIIIVRERR

19

Example
{5l unexplored:k:ifE visited: R

N

L

@ unexplored vertex
@ visited vertex
— unexplored edge O O G
— discovery edge
- = =» back edge

O ®»

Example (cont.)
K

21

N

DFS Algorithm

DFS7 /L3 X L

The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

21

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u e G.vertices()
setLabel(u, UNEXPLORED)
for all e € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
If getLabel(v) = UNEXPLORED
DFS(G, v)

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
W < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
DFS(G, w)
else
setLabel(e, BACK) 22

Depth-First Search

ASBIRER

Depth-first search gDFS) isa @ DFS on a graph with n
general technique for vertices and m edges takes
traversing a graph O(n+m) time
JI7RRED—RGEFIED NMEDEEMEDEDIZED
1D BEfE: O(n+m)

A DFS traversal of agraph G~ @ DFS can be further extended

= Visits all the vertices and to solve other graph
edgesof G problems
ETOEERFIIND = Find and report a path

N

GHVGEFEL TLNDH D HI I
Computes the connected
components of G

GO LD ETE
Cf(__)gputes a spanning forest
0

EEFDFE

= Determines whether G is between two given vertices
connected SZ N2 R[ED/INRADIR

RERI
Find a cycle in the graph
DI3TNDHA7ILDFER

23

N

Properties of DFS
DFS® 4% 4%

Property 1

DFS(G, v) visits all the
vertices and edges in the
connected component of v

ETCOEHERETND,

Property 2
The discovery edges labeled e
by DFS(G, v) form a
spanning tree of the
connected component of v

AEEADRIEINIVEREOND,

24

Analysis of DFS

DFS® 73 7

Setting/getting a vertex/edge label takes O(1) time
EIRHEDINILDERTE TG : 0(1)
Each vertex is labeled twice
s once as UNEXPLORED (Z:4RH)
s once as VISITED (EHR3:%)
Each edge is labeled twice
s once as UNEXPLORED
s once as DISCOVERY or BACK (R &hf-orE5)

Method incidentEdges is called once for each vertex

DFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure
E1THfE: O(n + m)

= Recall that X, deg(v) = 2m

N

& @

25

N

Work in class

Find the references (Python or Java implementation of DSF)

26

N

17/6/11 14851953

In Python

Breadth-First Search

27

T

graph = {'A': set(['B', "'C']),
'B': set(['A', 'D', 'E']),
'C': set(['A", 'F']),
'D': set(['B']),
'E': set(['B', 'F']),
'F': set(['C", "E'])}

Below is a listing of the actions performed upon each visit to a node.
e Mark the current vertex as being visited.
e Explore each adjacent vertex that is not included in the visited set.

using the stack data-structure

def dfs(graph, start):
visited, stack = set(), [start]
while stack:
vertex = stack.pop()
if vertex not in visited:
visited.add (vertex)

stack.extend (graph[vertex] - wvisited)

return visited

dfs(graph, 'A'] i {'E', 'D'; IFIir IR'!I 1{:;’

output

28

Returning all possible paths between a start and goal vertex.

def dfs_paths(graph, start, goal):
stack = [(start, [start])]
while stack:
(vertex, path) = stack.pop()
for next in graph[vertex] - set(path):
't next == goal:
| vield path + [next]

_;étack.append((next. path + [next]))

. =
list (dfs_paths(graph, "4", "F")) # [["A", 'C", 'F']

Recursive approach

def dfs(graph, start, visited=None):
if visited is None:
visited = set ()
visited.add (start)
for next in graph[start] - visited:
dfs (graph, next, visited)
return visited

dfs (graph, 'C'")

17/6/11 1383545 Depth-First Search

[!g!’ !B” !E?’ !F’]]

29

N

“graph = {’47: set([’B’, 'C’1), ° °
511 ST 0 e,
. Se | s s
‘07 set(['B’]), ‘II'P"EiD
‘BT set (['B7, 'F7]),
'F':roset(['C", ET]D}

def dfs_paths(graph, start, goal, path=None):
if path is None:
path = [start]

¢ start == goal:
vield path
for next in graph[start] - set (path):
vield fron dfs_paths(graph, next, goal, path + [next])

list (dfs_paths(graph, 'C*, 'F*)) # [['C", °F'], [’C’, A", °B", 'E’, 'F’]]

17/6/11 14854059 Breadth-First Search 30

N

17/6/11 14851953

In Java

Breadth-First Search

31

runbDFS [(w, stCate];

state[u] = VertexState. Black;

http://www.algolist.net/Algorithms/Graph/Undirected/Depth-first _search
Initially all vertices are white [unvisited). DFS starts in arbitrary vertex and runs as follows:
1. Mark vertex u as gray (visited).
2. For each edge (u, v), where u is white, run depth-first search for u recursively.
3. Mark vertex u as black and backtrack to the parent.
%
Java
public clasa Graph |
enum Vertex3tate |
Whike, Grey, Black
|
public woid DEFES(]
|
VertexState state[] = new VertexState [vertexCount];
for [(imt i = ; 1 < wertexCounty; i++)
state[il] = VertexState.White; for all ¢ € G.incidentEdges(v)
runbDFs {0, stata); if getLabel(e)= UNEXPLORED
I W « opposite(v,e)
if getLabel(w)= UNEXPLORED
public void runDFS{int u, VertexState[] state) setLabel(e, DISCOVERY)
| DFS(G, w)
- S — R else
atate[u] = VertexState.Gray: setLabel(e, BACK)
for [(imt v = 0; v = wvertaxCount; wvw++]
if {isEdge(u, +) && state[v] == VertexState.White})

32

http://www.algolist.net/Algorithms/Graph/Undirected/Depth-first_search

http://sourcecode4all.wordpress.com/tag/depth-first-search/
http://sourcecode4all.com/depth-first-search/

Use adjacent list to implement DFS

N

J
?l.i]li[: void dfs{int head) 7/ recursive depth-first =zearch
Mode w;
int v;
mark[head] = 1; S/ 1 : if node v iz already vizsited, 0 :
Svstem. avfprinthead + % 7);
T El.lj_iLiE'I'. [hEEI.Ij]; // adjlList is adjacent list
while (w !'= null) |
v = w. label;
if Cmark[v] == 0)
df =(v):
w = w.next:
I
i
A|B|C|D]|E
AlO0O]1]0]|1]1
B|1|]0]|1]1]0
c|0|1]|0]|1]|1
D|j1|1|1]|]0]{0O0
E|1(0]|1]|]0]|0
Undirected Graph Adjacency list Adjacency matrix

if not

33

http://sourcecode4all.wordpress.com/tag/depth-first-search/
http://sourcecode4all.com/depth-first-search/

http://sourcecode4all.wordpress.com/tag/depth-first-search/

public void dfz(int head) // recursive depth-first zearch

|
< Node w:
int v;
mark [head] = 17 S/ 1

w = adjlist [head];
while (v !'= null) {
v = w. label;
if (mark[v] == 0)
df = (v);

w = oW onext:

1

System. evf.print (head + * *3:

if node v i= already wizited, 0 @ if not

Depth-First Search

clazs Node

{ int label; /f vertex label
Mode next; /f next node in list
Model int b) /f constructor
{ label = b; }

K

class Graph

{ int size;

Mode adjList[];

int mark[];

Graph(int n) // constructor
{ size = n;

adjList = new Mode[size];
mark = new int[size]; // elements of mark are initialized to 0

b

public void createAdjList(int a[][]) // create adjacent lists

{

Node p; int i, k;

for(i =0; i < size; i++)

{ p = adjList[i] = new Node(i); //create first node of ith adj. list
for(k = 0; k < size; k++)

{ifCalillk] ==1)

{ p.next = new Node(k); // create next node of ith adj. list

p = p.next;

333}

Al B[O] PLE]X
oE, E E,

[B D E | X

DE R RS

E A C (X

wlalolalo|»
O|=a|l=|o|=a|m
alalolalo|a
o|lo|=|o(a|m

O|lO|=lalal0

mojo mwo|»

Undirected Graph Adjacency list Adjacency matrix

http://sourcecode4all.wordpress.com/tag/depth-first-search/
http://en.wikipedia.org/wiki/Adjective

N

L

public void df = int head) // recursive depth-first =search

1
Mode w;
int v;
mark[head] = 1; Sf 1 2 if node v i= already visited, 0 :
Swstem. ovf.printthead + ° 7
w = adiList [head]: // adiList is adjacent list
while (v !'= null) {
v = w. |abel . // label is the label of a vertex
if (mark[v] == 0)
df = (v);
w = W next:
I
I

17/6/11 1285384 Breadth-First Search

if not

35

N

http://lab.tomires.eu/metro/

17/6/11 12853845 Breadth-First Search

36

http://lab.tomires.eu/metro/

Work in class

N

one

A directed graph G with 6 vertices and 8 edges,
Please write (1) an adjacency-list representation of G.

17/6/11 1285385

(2) The adjacency-matrix representation of G.

Breadth-First Search

37

V= 117034
E={(1,2), (2, 4),4,2) 4, 1)

Define a graph G=(V, E), o

p
“for example, V = {1, 2, 3, 4} ‘\\L>
©

E={(,2),(24), 4 2) 4 1)} ®

1. Transpose
If graph G = (V, E) is a directed graph, its transpose, GT = (V, ET) is the same as
graph G with all arrows reversed.

2. Square

The square of a directed graph G = (V, E) is the graph G2 = (V, E2) such that (a, b)eE?
if and only if for some vertex ceV, both (u, ¢)<E and (c,b)eE. That is, G2 contains an
edge between vertex a and vertex 6 whenever G contains a path with exactly two
edges between vertex a and vertex b.

1 2 3

Ex. 10-1 and 10-2 (Work in class) : ‘ / 1

What the algorithms in pseudo codes for S ¢
G e

1. Graph Transpose
2. Graph Square

An example

17/6/11 1585175 Depth-First Search 38

‘ . If we label the vertices | to 6 (top three are 1, 2 and 3, bottom three from left to right

are 4, 5 and 6), we get the following adjacency matrix:
1 2 3 4 5 6
_E 1 0 0 0 0 0 0
: 2 1 0 0 0 0 0
3 0 0 0 0 0 1
4 0 0 0 0 0 0
5 1 1 1 1 0 0
4 5 6 6 0 0 0 0 1 0
¢

1 2 3 4 5 6

1 0 0 0 0 0 0

2 1 0 0 0 0 0

3 0 0 0 o |[C1 D 1

4 0 0 0 0 0 0

5 1 1 1 1 0 Ci

6 | C1 1 ‘{ 1 3 1) ! 0

e

The arc (5,1) is not doubled up because it already exists.

GZ

17/6/11 1585394 Depth-First Search 39

