
アルゴリズムの設計と解析

教授： 黄 潤和 （W4022）
rhuang@hosei.ac.jp

SA： 広野 史明 （A4/A8）
fumiaki.hirono.5k@stu.hosei.ac.jp

Contents (L8 – Search trees)

Red Black Tree (review and deletion)

中間課題いついて

2

Red-Black Trees 3

Outline

What is Red-Black?
赤黒木とは？

From (2,4) trees to red-black trees
2-4木から赤黒木へ

Red-black tree 赤黒木
 Insertion 挿入

 restructuring 再構築
 recoloring 再色付け

 Deletion 削除
 restructuring 再構築
 recoloring 再色付け
 adjustment 調整

Red-Black Trees 4

Red-Black Trees

video lecture
http://videolectures.net/mit6046jf05_demaine_lec10/

Watch about 25 minutes
to feel how a top university in the world gives lectures of CS

MIT - Massachusetts Institute of Technology

http://videolectures.net/mit6046jf05_demaine_lec10/

７|18

8|10|11
22|26

What is this tree?

This is red-black tree?

16

Height of a (2,4) Tree
(２,４)木の高さ

Theorem: A (2,4) tree storing n items has height O(log2 n)

Proof:
 Let h be the height of a (2,4) tree with n items

 Since there are at least 2i items at depth i = 0, … , h - 1 and no
items at depth h, we have

n  1 + 2 + 4 + … + 2h-1 = 2h - 1

 Thus, h  log2 (n + 1)

Searching in a (2,4) tree with n items takes O(log2n) time

1

2

2h-1

0

items

0

1

h-1

h

depth

< = lg(n+1)

- Answer

 h’  log2 (n + 1)

Do not forget to keep the properties
After do any operations ---------------

Analysis of Algorithms 22

Red Black Tree deletion procedure

Red-Black Trees 23

Deletion 削除
To perform operation remove(k), we first execute the deletion
algorithm for binary search trees
最初に2分探索木の削除アルゴリズムを用いる

Let v be the internal node removed, w the external node removed,
and r the sibling of w
内部ノード v を削除すると、外部ノードの w と r も削除される。
 If either v was red (r was black), no change

or r was red (v was black), we color r black and we are done
 Else (v and r were both black) we color r double black, which is a

violation of the internal property requiring a reorganization of the tree

Example where the deletion of 8 causes a double black:

Double black!
Violation: Black height is changed

Solution?

Keep black height = 2

Red-Black Trees 24

(1) Deletion – a node without external children

(Swap  a node with external children)

No double black

(2) Deletion – a node with external children

25

Remove v (when deleting a black node, double black problem!)
1. If v was red, color u black,

else (v was black), color u double black.

2. If double black edge exists, perform action for 3 cases:

• Case 1: black sibling s with a red child

• Case 2: black sibling s with black children

• Case 3: red sibling s

if else

Analysis of Algorithms 26

S black

S red

Case 1: black sibling s with a red child

Red-Black Trees 27

• If sibling s is black and one of its children is red,
 perform a restructuring (rotation and place children nodes in right positions)

Leaf node
in black

successor node
of p

successor external
node of p

Why Z here, not S?

Keep node vales
in order!

Case 2: black sibling s with black children

Red-Black Trees 28

• If sibling and its children are black,
perform recoloring

If parent becomes double black,
continue upward

1. recoloring
from leaf nodes

2. continue upward

Continue to solve the
double black edge
by recoloring

Case 3: red sibling s

Red-Black Trees 29

• If sibling s is red,
 perform an adjustment

then its sibling is black (Case 3 becomes Case 1 or Case 2)

V’s sibling (S) becomes black,
Which becomes Case 1&2

Case 1

Case 2

s

30

Some examples
Delete 9, 8, 7

Which case?

Which case?

Red-Black Trees 31

Note: Blue color nodes refer to red node

Q1: Which case?
• case 1
• case 2
• case 3

Q2: What operation?
• restructuring
• recoloring
• adjustment

One more example

Delete 12

Red-Black Trees 32

Analysis of Deletion
挿入の分析

Recall that a red-black tree
has O(log n) height

Step 1 takes O(log n) time
because we visit O(log n)

nodes

Step 2 takes O(1) time

Step 3 takes O(log n) time

because we perform

 at most one restructuring
taking O(1) time

 O(log n) recoloring,

 O(log n) adjustmen,

Thus, an deletion in a
red-black tree takes
O(log n) time

Algorithm deleteItem(k, o)

1. We search for key k to locate the node v

2. We delete node v and

3. while doubleBlack(v)

if isBlack(sibling(v))

if isRed(sibling(oneOfChildren(v)))

restructuring()

else

recoloring()

else { sibling(v) is red }

adjustment()

Time Complexity of Red-Black Trees

17/5/31 7時38分 Red-Black Trees 33

Red-Black tree demo

17/5/31 7時38分 Red-Black Trees 34

Demo
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Java implementation in Java
And more explanations in this site
http://fujimura2.fiw-web.net/java/mutter/tree/red-black-tree.html

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
http://fujimura2.fiw-web.net/java/mutter/tree/red-black-tree.html

Red-Black Trees 35

RedBlackTree.java

Read and understand
If possible, execute the program.

17/5/31 7時38分 Red-Black Trees 36

17/5/31 7時38分 Red-Black Trees 37

Analysis of Algorithms 38

17/5/31 7時38分 Red-Black Trees 39

n cases
- leaf node: no children
- no left branch
- no right branch
- has two branches

For swap

v

x

17/5/31 7時38分 Red-Black Trees 40

n

p

s s

p

n

n

p

s s

p

n

Case 2

Case 2

Case 3

17/5/31 7時38分 Red-Black Trees 41

Case 1: black sibling s with a red left child

Case 1: black sibling s with a red right child

Case 1: the above case’s mirror case

Case 1: the above case’s mirror case

Red-Black Trees 42

元の２分探索木、空木に挿入した場合は新しい木

17/5/31 7時38分 Red-Black Trees 43

Insertion 3 cases
Of course, in fact, there are 6 cases since each of them has the mirror case

Red-Black Trees 44

Work in class:
Please read and understand the
program and mark three cases

Red-Black Trees 45

case 2
-> case 3

case 3

case 1

46

Exercise 8-1
Consider the following sequence of keys: (15, 11, 26). Delete the items
with this set of keys in the order given into the red-black tree below.
Draw the tree after each deletion.

キー配列について考える: (15, 11, 26)

このキーのセットを図の赤黒木に削除しなさい。

それぞれの削除後の赤黒木を描きなさい。

中間課題

17/5/31 7時38分 Red-Black Trees 47

1. What is the Divide and Conquer algorithm and take an example to explain
2. What is the Dynamic Programming and take an example to explain
3. Redo Exercise 4.2 and 4.3
4. Proof: a 2-3-4 tree storing n items has height O(log2 n) and Redo Ex 5.1
5. What are rotation and merge operations in a 2-3-4 tree deletion procedure?

use examples to explain.
6. State the relation between a red-black tree and a 2-3-4 tree and

Redo Ex 7.2 and do Ex 8.1
7. Summarize the 3 cases in the insertion procedure and

the 3 cases in the deletion procedure of a red-black tree

