1V

ZILTY X LDERE CEHT

Hix: = BEfD (W4022)

rhuang@hosei.ac.jp

SA: 5% SEBEA (A4/A8)

fumiaki.hirono.5k@stu.hosei.ac.jp

AN

COntentS (L8 —r-Seareh trees)

N

Red Black Tree (review and deletion)
@ PREEREWNDT

Outline

What is Red-Black?
FRERET?

From (2,4) trees to red-black trees
2-4 KM FRERA

Red-black tree FEK

N

= Insertion A

+ restructuring BEZE

+ recoloring BRI
» Deletion Al Fx

+ restructuring BiEE

+ recoloring BRI

+ adjustment HEE

Red-Black Trees

Red-Black Trees

‘video lecture
http://videolectures.net/mit6046jf05 demaine lec10/

Watch about 25 minutes
to feel how a top university in the world gives lectures of CS

MIT - Massachusetts Institute of Technology

QS World University Rankings rates MIT No. 1 in 12 subjects for 2016 ...
news.mit.edu/2016/qs-world-university-rankings-rates-mit-no-1-in-... v CMO/RX—%ER9
2016/04/08 - QS World University Rankings has unveiled its lineup of the world's top universities for
2016, by subject. MIT was honored with 12 No. 1 subject rankings, and 19 total top rankings (No. S or
higher) out of 42 subjects.

Red-Black Trees 4

http://videolectures.net/mit6046jf05_demaine_lec10/

‘ Red-black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:
1. Every node 1s either red or black.

2. The root and leaves (NIL’s) are black.
3. If a node 1s red, then its parent 1s black.
4

. All sitmple paths from any node x to a

descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

ALGC RIIH\IS

=5+ Example of a red-black tree

\\‘ ‘

NIL

~
[

NIL NIL NIL NIL NIL NIL

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

4

”'ﬁ Example of a red-black tree

NIL

NIL NIL NIL NIL NIL NIL

1. Every node 1s either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

”'ﬁ Example of a red-black tree

NIL

NIL NIL NIL NIL NIL NIL

2. The root and leaves (NIL’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

“""'! Example of a red-black tree

\\‘ ‘

NIL

NIL NIL NIL NIL NIL NIL

3. If a node 1s red, then its parent 1s black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

“""'! Example of a red-black tree

\\‘ ‘

NIL NIL

bh=0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a
descendant leaf have the same number of

black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

" ",' . Height of a red-black tree
Theorem. A red-black tree with » keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

" ",' . Height of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

" ",' . Height of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

ey Helght of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Helght of a red-black tree

\‘\‘ ‘

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: 7118 What is this tree?
* Merge red nodes
into their black . 22]26
parents.

lllll

Th|s is red-black tree?
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Height of a (2,4) Tree
(2,4)RKDEFS

N

Theorem: A (2,4) tree storing n items has height O(log, n)

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2! items at depthi=0,...,h—-1and no

items at depth h, we have
N>14+2+4+...42Mm1=2h_1

= Thus, h <log, (n+1)
Searching in a (2,4) tree with n items takes O(log,n) time

depth items

0 I L B B i s

1 7200 s o i W B

h-1 2hl-————m———

h 0 ————————1 — L1 L1

Height of a (2,4) Tree
(2,4)KDBE
Theorem: A (2,4) tree storine

ALGORITHMS

ht @(log, n)
Tee with » items
Si s at depth i =0, h—1and no
’ # Searching in a (2,4) tree with » items takes @log,n) time
N
. o - depth items
A i 0

et e e e N

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:]

* Merge red nodes B < = lg(n+1)
into their black l
parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth /' of leaves.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

“""'! Proof (continued) - answer

“\‘ ‘

* We have
h' > h/2, since
at most half
the leaves on any path
are red.

* The number of leaves
in each tree1s n + 1
—=n+1>2"
= lgn+1)>h'>h/2
= h<2l1g(n+1).

= h’<log, (n+1)

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15

ALGORITHMS

= 4+ Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black
tree with » nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

ALG ()RHH\I‘:

=~ Modifying operations

\\‘ ‘

The operations INSERT and DELETE cause
modifications to the red-black tree:

» the operation itself,
* color changes,

» restructuring the links of the tree via

“rotations”.
Do not forget to keep the properties Red-black properties:
After do any operations --------------- > | |- Every node s either red or black.

2. The root and leaves (NIL’s) are black.
3. If anode is red, then its parent is black.
4

. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

= 4~ Rotations

@ RIGHT-ROTATE(B)

Rotations maintain the inorder ordering of keys:
cacea,beP,cey =>afd<b<B<ec.

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

N

Red Black Tree deletion procedure

Analysis of Algorithms

22

Red-black properties:

1. Every node is either red or black.

2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4.

of black nodes = black-height(x).

N

De I eti O I l ﬁlj |-v All simple paths from any node x to a
R descendant leaf have the same number
¥

To perform operation remove(k), we first execute the deletion
algorithm for binary search trees
RAI2DIERARDHEBET LIV LERAWNS
Let v be the internal node removed, w the external node removed,
and r the sibling of w
RE/—F v ZEIBRT HE. S8/ —FD w & r BEIBREN D,
= If either v was red (r was black), no change
or r was red (v was black), we color r black and we are done

= Else (v and r were both black) we color r double black, which is a
violation of the internal property requiring a reorganization of the tree

Example where the deletion of 8 causes a double black:
Double black!

Violation: Black height is changed

r
Keep black height = 2

Solution?

Red-Black Trees 23

(1) DGIEtion — a node without external children

(Swap - a node with external children)

N

If the key to be deleted is stored at a node that
has no external children, we move there the key
of its inorder predecessor (or successor), and
delete that node instead

Example: to delete key 7, we move key 5 to
node u, and delete node v

No double black

Red-Black Trees 24

(2) DE|€tIOn — a node with external children

hen deleting a black node, double black problem!)
1. If v was red, color u black,
else (v was black), color u double black.

2. If double black edge exists, perform action for 3 cases:

p p
Case 1: black sibling s with a red child \t@t%}i
| L7 0 /{}j

Case 2: black sibling s with black children

& p
Case 3: red sibling s V(% QAJ

"""""" 25

S blac

- red sibling s

S red

Case 2:/black sibling s'wi

Analysis of Algorithms

+ Case 1: black sibling s with a red child C?" @\Dﬁ Z
i
VSERTAWAS

26

N

Case 1: black sibling s with a red child

e If sibling sis black and one of its children is red,
- perfOrm a restructu ring (rotation and place children nodes in right positions)

Leaf node
in black

successor node
of p

Why Z here, not S?

Keep node vales
in order!

successor external
node of p

Red-Black Trees 27

Case 2: black sibling swith black children

N

o If sibling and its children are black,
—>perform recoloring
If parent becomes double black,
—>continue upward

p P
\" S v S 1. recoloring
D from leaf nodes
2. continue upward
[
p P __ Continue to solve the
double black edge
V. S D> Y S by recoloring

Red-Black Trees 28

N

P P
Case 1: black sibling s with a red child ' v’(’!\ R &%
LR L

Case 3: red sibling s

« Case 2: black sibling s with black children
p 2\/
u = = p / S \ s
g If SI bI I ng 5 IS red[« Case 3: red sibling s v /)(‘ e o I\

- perform an adjustment
then its sibling is black (Case 3 becomes Case 1 or Case 2)

P S

V’s sibling (S) becomes black, Lo =
Which becomes Case 1&2 Case 2

Red-Black Trees 29

p P
» Case 1: black sibling s with a red child VJ\ = /NS
/\

n
i
S O m e eXa m I e S « Case 2: black sibling s with black children
P ;(\/
p vINS T N
Delete 9/ 8[7 » Case 3: red sibling s v/k i} N
~ B

Delete 9 (6)

No double black,
no further process.

Which case?

30

One more example

N

L

Delete 12

Red-Black Trees

p P
» Case 1: black sibling s with a red child \J\ T A
b Op \\

/

5
v s I\ s
A J/\

» Case 2: black sibling s with black children

p
» Case 3: red sibling s v /k

Note: Blue color nodes refer to red node
Q1: Which case?

e casel
e case?2
e case 3

Q2: What operation?
» restructuring
« recoloring
« adjustment

31

Analysis of Deletion
FADDHT

N

Algorithm deleteltem(k, 0)
1. We search for key k to locate the node v
2. We delete node v and

3. while doubleBlack(v)
if isBlack(sibling(v))
If isRed(sibling(oneOfChildren(v)))
restructuring()
else
recoloring()
else { sibling(v) is red }
adjustment()

Red-Black Trees

Recall that a red-black tree
has O(log n) height

Step 1 takes O(log n) time
because we visit O(log n)
nodes

Step 2 takes O(1) time

Step 3 takes O(log n) time
because we perform

= at most one restructuring
taking O(1) time

= O(log n) recoloring,
= O(log n) adjustmen,

Thus, an deletion in a

red-black tree takes
O(log n) time

32

Time Complexity of Red-Black Trees

N

S

ﬁ Operation Time
ﬁ Search O(log N)
Insert O(log N)

Delete O(log N)

17/5/31 785385 Red-Black Trees 33

/Red-BIack tree demo

N

Demo
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Java implementation in Java
And more explanations in this site

http://fujimura?2.fiw-web.net/java/mutter/tree/red-black-tree.html

17/5/31 785385 Red-Black Trees

34

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
http://fujimura2.fiw-web.net/java/mutter/tree/red-black-tree.html

N

RedBlackTree.java

L

Read and understand

If possible, execute the program.

Red-Black Trees

35

4l

JESS

* JneeA Red Black Tree

* @see FHRE KR/ A>
* @author Hikaru Fujimura

*/ @version 2005. 08. 31

= 3

public class RedBlackTree<T extends Comparable<? super T>> extends BinaryTree<T> |

private boolean color;
public static boolean BLACK = true:
public static boolean RED = false;

/*x J — FDER */
private RedBlackTree(T v, boolean ¢, RedBlackTree<T> p, RedBlackTree<T> |, RedBlackTree<T> r) |

value = v;
color = ¢;
parent = p.
left = |;

right = r;

17/5/31 785385 Red-Black Trees 36

VeSS

BLACK, this,
BLACK, this,

null,
null,

* BER Vv EHELD20FEFRDERLE
* EEELT:*E%B%‘*& LT.NIL &BEMZ él (£,
* setAsLeaf X FZ&{EA | LTLEEL
*/ @param v IRIZERTET HIE
*
RedBlackTree (T v) |
i f(v==null) throw new IllegalArgumentException() ;
value = v,
color = BLACK;
parent = null;
left = new RedBlackTree<T> (null,
} right = new RedBlackTree<T> (null,
private RedBlackTree(T v, boolean ¢) |
this(v);
color = ¢,
}
VeSS
* TROERLET,
*/NIL ELTHELNET .
*
RedBlackTree () |
this(null, BLACK, null, null, null);

}

17/5/31 78¥38%

Red-Black Trees

null) ;|
null) ;

37

o o v PS pS z
+ Case 1: black sibling s with a red child HE \bwi s @\DJ&
+ (ase 2: black sibling swith black children

+ (ase 3: redsibling s

Analysis of Algorithms 38

TEERNS By ZHIBRLET.

@param v HIkRS 5 E
@return TN 2 EFEKR (HIRE)

RedBlackTree<T> delete(T v) |
if(isNIL())) return this;

RedBlackTree<T> (RedBlackTree<T>) search (v) ;

if(n.isNILO)) retdrn this;
boolean ¢ = n.color;
if(n left. isNILO) && n.right. isNIL()) {
n.value = null;
n. left = null;
n.right = null;
return checkRB(n, ¢);

}
if(n left. isNILO)) |

n cases

- leaf node: no children

- no left branch
- no right branch
- has two branches

// empty tree

// search
// not found

// colar of the node deleting
&5
Y/ change to NIL

// only parent chain

//no left subtree >
n = (RedBlackTree<T>)n.replace(n.right) replace here by right subtree

if(n. isRoot()) return n.checkRB(n, ¢);
else return checkRB(n, c¢);

}
if(n. right. isNILO) |

n = (RedBlackTree<T>)n. replace(n. left);

if(n. isRoot()) return n.checkRB(n, c);
| else return checkRB(n, c);
RedBlackTree<T> (RedBlackTree<T>)n. left;
while(!x. right. iSNIL()) {
= (RedBlackTree<T>)x.right;

}

T prev = x.value;

¢ = x.color;

X = (RedBIackTree<T>) replace (x. left) ;
n.value = prev;

return checkRB(x, ¢):

}
17/5/31 785385 Red-Black Trees

// 00 _right subtree>

// replace here by left subtree

// now, t has 2 subtree

// get smaller subtree

// as far as right subtree exist

// get greater value

//

// maximun value that less than v

F

or swap

// replace here by left

// replace v
// and return

[) —RFOBOHFE »/
private RedBlackTree<T> checkRB(RedBlackTree<T> n, boolean ¢) {
// hoolean debug = n. checkQut (-325455329) ;

// if (debug && c==RED) System.out.printin("deleted node was RED");
if (c==RED) return this;
if(n. isRED()) |
n.color = BLACK;
return this;

}
RedBlackTree<T> tree = this;
while (true) |

if(n. isRoot()) |

n.color = BLACK;
return tree,

RedBlackTree<T> p = (RedBlackTree<T>)n. parent;
/ RedBlackTree<T> s = (RedBlackTree<T>)n. getBrother ();

if (debug) System.out.printIn(” p:"+ p.toString()+ “ s:"+s. toString()) S n n S
Case 3 if(s sREDO). |
. setRED() ;

p. setRED() ;
o 5. setBLACK () ; @ 5. setBLACK () ;
if(p. left==n) |
tree = (RedBlackTree<T>)tree. rotateLeft (p) ; D D
s = (RedBlackTree<T>)p. right; . .

J
Dl else |
tree = (RedBlackTree<T>)tree. rotateRight (p); S n n S
}

s = (RedBlackTree<T))p. left;

) ﬂ rotateRight (p) ; ﬂ rotateleft (p)
RedBlackTree<T> sl = (RedBlackTree<T>)s. left;

RedBlackTree<T> sr = (RedBlackTree<T>)s.right;
Case 2 if(p. isBLACK() && slI.isBLACK() && sr.isBLACK()) |

5. setRED() ; P, \/ I,/{
n=n; IN\s g~ v <

Case 2 if(sl. isBLACK() & sr.isBLACK() |

Which becomes Case 1&2

n. setBLACK () ; P P
5. setRED(); Yofioul BesAsfel
return tree, ;;’}r oRe)

40

if(p. left==n && sl|.iSRED() && sr. isBLACK()) | Case 1: black sibling s with a red left child

sl|.setBLACK() ; P

s. setRED () ; /\s . p/\
tree = (RedBlackTree<T>)tree. rotateRight (s): A | /&/]\
sr = s; [{,

s = sl; ’

sl = null; // don't use anymore

} else if (p.right==n && sl. isBLACK() && sr.isRED()) [Case 1: the above case’s mirror case
sr. setBLACK()

s. setRED () ;

tree = (RedBlackTree<T>)tree. rotateLeft (s);
sl = s;

s = sr,

sr = null; // don't use this subtree anymore

}

if(p. left==n && sr. isRED()) [Case 1: black sibling s with a red right child
boolean t = p. color;
p.color = s.color,;

s.color = t; o p
sr. setBLACK () ; [
tree = (RedBlackTree<T>)tree. rotateLeft (p) ;

return tree;

} else if(p.right==n && sI.isRED(O) { (Case 1: the above case’s mirror case
boolean t = p.color;
p.color = s.color,;
s.color = t;
sl|.setBLACK() ;
tree = (RedBIackTree<T>)tree.ratateRight(p);
return tree,

17/5/31 785385 Red-Black Trees 41

TD25EERR, ERIEALEGEFFHLLVK
_(/**
* ZOD2HERRNIZ By #HEALET.

*

* @param v @ EATBIE

* @return TTD 2 IEFRAR. ERICEHEALFBEIIEFH LK
¥

RedBlackTree<T> insert(T v) |
iIT(isNIL()) return new RedBlackTree<T> (v, BLACK); // empty tree, insert as BLACK

BinaryTree<T> nn = search(v) // search v as Binary Search Tree
RedBlackTree<T> n = (RedBlackTree<T>)nn; //

while(In. isNIL(Q) { // found?

} n = (RedBlackTree<T>) (n. right).search(v); // yes, check right subtree

n. setAsLeaf (v, RED); // insert as RED node
RedBlackTree<T> p = null; // parent

RedBlackTree<T> g = null; // grand parent
RedBlackTree<T> u = null; // uncle

Red-Black Trees 42

Insertion 3 cases
Of course, in fact, there are 6 cases since each of them has the mirror case

N

L

"IN Case 1 FTH Case 2 BTN Case 3

R
‘ [Ri
] p y
X X
new x \1 ﬂ
.1 {
» 7

17/5/31 785385 Red-Black Trees 43

Whl |e(true) [T Ccase 1 ¥ Case2 T Case 3

if(n isRoot()) { // if nis root : g
n. setBLACK () ; // n can be BLACK always (case 1a) A AA «f:FX (Kfsj
return n; // HA Aﬁl AA
// n is not root Ve]
p = (RedBlackTree<T>)n.parent; // get parent) /gffl
if(p. iSBLACK()) | // case 1b? ALA YL Y Y Y
| return this; // n can be RED, if parent is BLACK
g = (RedBlackTree<T>)p. parent; // RED parent has parent
U = (RedBlackTree<T>)n. getUncle(); // s0, n has uncle
if(ul=null & u.isRED()) | // parent and uncle are RED(case 2)
g. setRED() ; // :
p. setBLACK () ; // Work in class:
u. SetBLACK 0 / Please read and understand the
continue: // program and mark three cases
}
RedBlackTree<T> temp; // temp for exchange
if(g left==p && p.right==n) | // left pattern of case 3
g = (RedBlackTree<T>)g. rotatelLeft (p);
temp = p;
p=n;
n = temp,;
} else if(g. right==p && p. left==n) |{ // right pattern of case 3
g = (RedBlackTree<T>)g. rotateRight (p);
temp = p,
P =n,;
\ n = temp;
if(g. left==p && p. left==n) | // left pattern of case 4
g setRED() ;

p. setBLACK () ;
g = (RedBlackTree<T>)g. rotateRight (g) ;
} else if(g. right==p && p.right==n) | // right pattern of case 4
g. setRED() ;
p. setBLACK () ;
g = (RedBlackTree<T>)g. rotatelLeft (g);
} else System. out.printin(“oops!insert to:“+this. toLongString()):
if(g. isRoot()) return g;

| olee return this: Red-Black Trees 44

while(true) |

if(n. isRoot()) { // if n is root
n. setBLACK () ; // n can be BLACK always (case 1a)
return n; //
// n is not root
p = (RedBlackTree<T>)n.parent; // get parent
if(p. isBLACK()) { // case 1b?
return this; // n can be RED, if parent is BLACK
} _ : B Case 1
g = (RedBlackTree<T>)p. parent; // RED parent has parent o
U = (RedBlackTree<T>)n. getUncle(); // s0, n has uncle 1
if(ul=null & u.isRED()) | // parent and uncle are RED(case 2) CASE
g setREDQ) ; //
p. setBLACK () ; //
u. setBLACK () ; //
n=g. //
| continue; //
RedBlackTree<T> temp; // temp for exchange
if(g.left==p(&& p. right==n) J :)// left pattern of case 3 ‘E’
g = (RedBlackTree<T>)g. rotateLeft (p) .
case 2 temp = p; ‘Ieft rotation }=>
->case3 PZ gé[“p. Q) @D
Pl case2 | else if(g. r(ight==p && p. Ie;ct==n) [:)// right pattern of case 3 G
g = (RedBlackTree<T>)g. rotateRight (p) : ight rotation ’
: temp = p; |ng o }:’
e | p=n.
Illeﬂ | n = temp;
if(g. left==p && p. left==n) | // left pattern of case 4 e
case 3 g. setRED () ;O @
p. setBLACK () ; _— ’
g = (RedBlackTree<T>)g. rotateRight (g) ;
P case3 | else if(g.right==p && p.right==n) |{ // right pattern of case 4

else return this;
} Red-Black Trees

" g. setRED() ;
- p. setBLACK () ;
B) A g = (RedBlackTree<T>)g. rotateLeft() m—
AA } else System.out.printin("oops!insert to: +this. toLongString()
) if(g. isRoot()) return g;

N

Exercise 8-1

Consider the following sequence of keys: (15, 11, 26). Delete the items
with this set of keys in the order given into the red-black tree below.
Draw the tree after each deletion.

F—FEEHZDLNTEZ S (15, 11, 26)
ZDF—DEYLERDFERIZHIBRLAEILY,
TNEZTNDHIBREZEDFRBREHESEIL,

46

N

J':F' pE T

1. Syllabus (2017 Syllabus)

2. L1 (Review data structures and algorithms(1))

3. L2 (Review basic algorithm analyses — Divide and Conquer)

4. L3 (Review basic algorithm analyses — Dynamic Programming)

5. L4 (Review Trees — traversal and math expressions)

6. L5 (Trees — AVL Tree, 2-3-4 Tree insertion)

7. L6 (2-3-4 Trees deletion)

8. L7 (Red-black Tree)

1. What is the Divide and Conquer algorithm and take an example to explain
2. What is the Dynamic Programming and take an example to explain

3. Redo Exercise 4.2 and 4.3

4. Proof: a 2-3-4 tree storing n items has height O(log, n) and Redo Ex 5.1
5. What are rotation and merge operations in a 2-3-4 tree deletion procedure?

use examples to explain.
. State the relation between a red-black tree and a 2-3-4 tree and
Redo Ex 7.2 and do Ex 8.1
7. Summarize the 3 cases in the insertion procedure and
the 3 cases in the deletion procedure of a red-black tree

(@)

17/5/31 785385 Red-Black Trees 47

