1V

ZILTY X LDERE CEHT

Hix: = BEfD (W4022)

rhuang@hosei.ac.jp

SA: 5% SEBEA (A4/A8)

fumiaki.hirono.5k@stu.hosei.ac.jp

AN

N

COntentS (L7 —r--Search trees)

Searching problems
Red Black Tree (insertion and deletion)

Outline

What is Red-Black?
FRERET?

From (2,4) trees to red-black trees
2-4 KM FRERA

Red-black tree FEK

N

= Insertion A

+ restructuring BEZE

+ recoloring BRI
» Deletion Al Fx

+ restructuring BiEE

+ recoloring BRI

+ adjustment HEE

Red-Black Trees

Red-Black Trees

‘video lecture
http://videolectures.net/mit6046jf05 demaine lec10/

Watch about 25 minutes
to feel how a top university in the world gives lectures of CS

MIT - Massachusetts Institute of Technology

QS World University Rankings rates MIT No. 1 in 12 subjects for 2016 ...
news.mit.edu/2016/qs-world-university-rankings-rates-mit-no-1-in-... v CMO/RX—%ER9
2016/04/08 - QS World University Rankings has unveiled its lineup of the world's top universities for
2016, by subject. MIT was honored with 12 No. 1 subject rankings, and 19 total top rankings (No. S or
higher) out of 42 subjects.

Red-Black Trees 4

http://videolectures.net/mit6046jf05_demaine_lec10/

‘ Red-black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:
1. Every node 1s either red or black.

2. The root and leaves (NIL’s) are black.
3. If a node 1s red, then its parent 1s black.
4

. All sitmple paths from any node x to a

descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.3

ALGC RIIH\IS

=5+ Example of a red-black tree

\\‘ ‘

NIL

~
[

NIL NIL NIL NIL NIL NIL

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.4

4

”'ﬁ Example of a red-black tree

NIL

NIL NIL NIL NIL NIL NIL

1. Every node 1s either red or black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.5

”'ﬁ Example of a red-black tree

NIL

NIL NIL NIL NIL NIL NIL

2. The root and leaves (NIL’s) are black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.6

“""'! Example of a red-black tree

\\‘ ‘

NIL

NIL NIL NIL NIL NIL NIL

3. If a node 1s red, then its parent 1s black.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.7

“""'! Example of a red-black tree

\\‘ ‘

NIL NIL

bh=0 NIL NIL NIL NIL NIL NIL

4. All simple paths from any node x to a
descendant leaf have the same number of

black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.8

" ",' . Height of a red-black tree
Theorem. A red-black tree with » keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.9

" ",' . Height of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.10

" ",' . Height of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.11

ey Helght of a red-black tree
Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.12

Helght of a red-black tree

\‘\‘ ‘

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: 7118 What is this tree?
* Merge red nodes
into their black . 22]26
parents.

lllll

Th|s is red-black tree?
October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.13

Height of a (2,4) Tree
(2,4)RKDEFS

N

Theorem: A (2,4) tree storing n items has height O(log, n)

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2! items at depthi=0,...,h—-1and no

items at depth h, we have
N>14+2+4+...42Mm1=2h_1

= Thus, h <log, (n+1)
Searching in a (2,4) tree with n items takes O(log,n) time

depth items

0 I L B B i s

1 7200 s o i W B

h-1 2hl-————m———

h 0 ————————1 — L1 L1

Height of a (2,4) Tree
(2,4)KDBE
Theorem: A (2,4) tree storine

ALGORITHMS

ht @(log, n)
Tee with » items
Si s at depth i =0, h—1and no
’ # Searching in a (2,4) tree with » items takes @log,n) time
N
. o - depth items
A i 0

et e e e N

Theorem. A red-black tree with n keys has height
h<2lg(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:]

* Merge red nodes B < = lg(n+1)
into their black l
parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth /' of leaves.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.14

“""'! Proof (continued) - answer

“\‘ ‘

* We have
h' > h/2, since
at most half
the leaves on any path
are red.

* The number of leaves
in each tree1s n + 1
—=n+1>2"
= lgn+1)>h'>h/2
= h<2l1g(n+1).

= h’<log, (n+1)

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15

ALGORITHMS

= 4+ Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(lg n) time on a red-black
tree with » nodes.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.16

ALG ()RHH\I‘:

=~ Modifying operations

\\‘ ‘

The operations INSERT and DELETE cause
modifications to the red-black tree:

» the operation itself,
* color changes,

» restructuring the links of the tree via

“rotations”.
Do not forget to keep the properties Red-black properties:
After do any operations --------------- > | |- Every node s either red or black.

2. The root and leaves (NIL’s) are black.
3. If anode is red, then its parent is black.
4

. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.17

= 4~ Rotations

@ RIGHT-ROTATE(B)

Rotations maintain the inorder ordering of keys:
cacea,beP,cey =>afd<b<B<ec.

A rotation can be performed in O(1) time.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.18

ALG ()RHH\IS

!”'"‘ Insertion into a red-black tree

o ‘ (always insert a red node)
IDEA' Insert x 1n tree. Color x red. Only red-

black property 3 might be violated. Move the
p the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Red-black properties:

1. Every node is either red or black.

violation 2. The root and leaves (NiL’s) are black.

----—>| 3. If a node is red, then its parent is black.
4

. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.19

571 Insertion into a red-black tree

\
\\‘\‘ \‘ i

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
* Insert x =15.

* Recolor, moving the
violation up the tree.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.20

=71 Insertion into a red-black tree

\
o

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
* Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.21

=71 Insertion into a red-black tree

\
o

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
* Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
e LEFT-ROTATE(7) and recolor.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.22

=71 Insertion into a red-black tree

\
o

IDEA: Insert x in tree. Color x red. Only red-
black property 3 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
* Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
e LEFT-ROTATE(7) and recolor.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.23

NIL NIL NIL NIL NIL NIL

m Case 1

new x

27

. Graphical notation

\‘\‘ ‘

Let Adenote a subtree with a black root.

All A’ s have the same black-height.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.25

ALGORITHMS

Case 1 https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Recolor

(Or, children of Push C’s black onto
A are swapped.) A and D, and recurse,
since C’s parent may

be red.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.26

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

ALGORITHMS

Case 2 https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

LEFT-ROTATE(A)

¥

Transform to Case 3.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.27

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

ALGORITHMS

=4~ Case3

RIGHT-ROTATE(C)
Y

Done! No more
violations of RB

property 3 are
possible.

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.28

ALGORITHMS

RB- INSERT(T X)
TREE-INSERT(7), x)
color[x] <= RED > only RB property 3 can be violated
while x roof{T] and color{p{x]] = RED =gl o™
— do if p[x] = left[p[p[x]]
ﬁ Case 2 then y < right[p[p[11 >y = aunt/uncle of x o

if color[y] = RED 3
% then (Case 1) @
' else if x = right[p[x]]

then (Case 2) > Case 2 falls into Case 3

(Case 3) 'q Case 3
else (“then” clause with “left” and “right” swappe "

color[root[T]] <« BLACK R

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L x

Red-black properties:

Every node is either red or black.

The root and leaves (Ni1.’s) are black.
If a node is red, then its parent is black.

All simple paths from any node x to a
— descendant leaf have the same number
of black nodes = black-height(x).

NIL NIL NIL NIL NIL NIL
RB-INSERT(7. x)
TREE-INSERT(7. x) T S N .1 (11"
color[x] < RED & only RB property 3 can be violated H M v Case 2 M = Case 3
while x = root[T] and color|p[x]] = RED e Jica Case 1 vy g i
do if plx] = lefilplplx]]
then v < right|p[p[x]) & v = aunt/uncle of x Ri
if cofor|y] = RED
y

then (Case 1)
else if x = right|p|x]|
then (Case 2) = Case 2 falls into Case 3
(Case 3)
else (“then” clause with “/efi” and “right” swapped)
color|roof|T]] < BLACK

-

33

ALGORITHMS

= .~ Analysis

\
“‘\‘ \‘ fn

* Go up the tree performing Case 1, which only
recolors nodes.

o If Case 2 or Case 3 occurs, perform | or 2
rotations, and terminate.

Running time: O(lg n) with O(1) rotations.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

October 19, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.29

N

Insertion program source code in Python

class TreeNode:
def __init__(self,val,left = None,right = None, parent = None,calar = None):
self.val = val
self.leftChild = left
self.rightChild = right
self.parent = parent
self.color = color

def hasLeftChild(self):
return self.leftChild

def hasRightChild(self):
return self.rightChild

def isLeftChild(self):
return (self .parent and (self.parent.leftChild == self))

def isRightChild(self):]
return (self.parent and (self.parent.rightChild == self))

Analysis of Algorithms 35

class BET(TreeNode):
def __init_(self):
self.root = None
self.size = 0
self.nil = TreeNode(lone)
self.nil.color = "hlack”

def addNode (self,val):
self.size += 1

y = self.nil
¥ = self.root
'f self.root == None:

| self.root = TreeNode(val,self.nil,self.nil,self.nil, hlack™)
z = TreeNode(val,self.nil,self.nil, None, “red”)
while x!=self.nil:

¥ = X

f z.oval < x.val:

¥ = x.hasLeftChild()
glse:
¥ = ¥x.hasRightChild()
z.parent = vy
'ty == gself.nil:

self.root = 2
elit z.val < y.val:
v.leftChild = z

y.rightChild = 2
self.treelnsFixer(z)

els

Analysis of Algorithms

def treelnsFixer(self,z):

while z.parent.cnln == “red”:
'+ z.parent == z.parent.parent.leftChild:
Yy = 2. parent parent rightChild
' v.color == “red”:
z.parent. cnlnr = "hlack”
y.color = "black” -
z.parent .parent.color = red
| 2 = z.parent .parent
elses
'f 2 == z.parent.rightChild:
z = z.parent
self.leftRotate(z)
z.parent.color = “hlack
z.parent .parent .color = “red”
self.rightRotate(z.parent .parent)
el if z.parent =z
y = z.parent .parent . [eftChild
'f y.color == Tred”s
z.parent.color = “hlack
y.color = "black” o
z.parent.parent.color = red
| z = z.parent .parent
glses
'f 2z == z.parent . lefiChild:
z = z.parent
self.rightRotate(z)
z.parent.color = “hlack
z.parent .parent .color = “red”
self.leftRotate(z.parent .parent)
self.root.color = "hlack”

z.parent .parent .rightChild:

def

def

leftRotate(self,x):

v = ¥.rightChild

¥.rightChild = v.leftChild

it ov.leftChild '= self.nil:
v.leftChild.parent = x

yv.parent = x.parent

T x.parent == self.nil:
sel|f.root = ¥

elif x == x.isLeftChild():
¥.parent.leftChild = v

else:

¥.parent.rightChild =
v.leftChild =
¥.parent = v
rightRotate(self,x):
v = ¥X.leftChild
¥.leftChild = v.rightChild
it v.rightChild '= self.nil:

v.rightChild.parent = x
v.parent = x.parent
if x. parent == self nil:
self.root = ¥
el if % == %x.isRightChild ()
| ¥x.parent .rightChild =
¥.parent . leftChild =
v.rightChild = x
¥.parent = v

inOrder(self,x):

i f(x'= self.nil):
self.inOrder(x.leftChild)
print (x.val, x.colar)
self.inOrder(x.rightChild)

Analysis of Algorithms

37

a = BST()

a.addNode (5)
a.addNode (7)
a.addNode (4)
a.addNode(B)
a.addNode (|
a.addNode (9
a.addNode ('
a.addNode (2
a.addNode ('
a.addNode
a.addNode (8)

OO e o = e =
e S s -

a.inOrder (a.root)|

RESTART: C:/rhuang-2016-10-28/Algorithms/algorithm-
2015/2017/lecture-notes/rb-tree-L7/red-black-insert.py

>>> a= BST()

>>> a.addNode(5)
>>> a.addNode(7)
>>> a.addNode(4)
>>> a.inOrder(a.root)
4 red

5 black

7 red

>>> a.addNode(6)
>>> a.addNode(11)
>>> a.inOrder(a.root)
4 black

5 black

6 red

7 black

11 red

>>> a.addNode(17)
>>> a.inOrder(a.root)
4 black

5 black

6 black

7 red

9 red

11 black

17 red

38

An example

N

11

HILBMHIL

NILENIL

HILERNIL NILEMHIL

L ol ore G B L

— T P - = - -

LEIZ 88 ZHEAT HLE.

39

Red-Elack Tree 24

Red/Black Tree Demonstration T{ER{E ML 05

FEIZ gg wiEA T TFROLDITIGVET,

40

N

Work in class

Please add the following nodes to red-black tree
in order

20, 5, 40, 10, 25, 2, 35, 15, 13, 30, 33

Red-black properties:

. Every node is either red or black.

. The root and leaves (N11.’s) are black.

. If a node is red, then its parent is black.

. All simple paths from any node x to a
descendant leaf have the same number
of black nodes = black-height(x).

Analysis of Algorithms 41

= L N -

Demo

N

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Analysis of Algorithms

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

N

Exercise /-1

L

Please try to transfer the following 2-3-4 tree
to a red-black tree

Analysis of Algorithms

43

Exercise /-2

N
\J

Consider the following sequence of keys: (18, 30, 25, 12, 14). Insert the
items with this set of keys in the order given into the red-black tree
below. Draw the tree after each insertion.

45

F—EHIZDLNTEZRS: (18, 30, 25, 12, 14),
ZDFXF—DYrEROFRERITHEALLGSLY,
FNFNOBARDOFRERFHESHIL,

44

This is another web site for your reference

N

L

http://fujimura2.fiw-web.net/java/mutter/tree/red-
black-tree.html

Please read through
Its implementation is in Java

http://fujimura2.fiw-web.net/java/mutter/tree/red-black-tree.html

