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Divide and Conquer
Dynamic Programming



L3. 動的計画法
Dynamic Programming



What is dynamic programming?

Dynamic Programming  is  a general algorithm design technique 
for solving problems defined by or formulated as recurrences 
with overlapping sub-instances. Invented by American 
mathematician Richard Bellman in the  1950s to solve 
optimization problems and later assimilated by CS

動的計画法（どうてきけいかくほう、英: Dynamic Programming, 
DP）は、計算機科学の分野において、アルゴリズムの分類の1
つである。対象となる問題を複数の部分問題に分割し、部分問
題の計算結果を記録しながら解いていく手法を総称してこう呼
ぶ。

ボトムアップである（つまり、部分問題を解き終わるまで問題全体に手を出
してはいけない）



Main idea?
1. set up a recurrence relating a solution to a larger instance  to 

solutions of some smaller instance
2. solve smaller instances once
3. record solutions in a table
4. extract solution to the initial instance from that table

直接計算すると大きな時間がかかってしまう問題に対し、途中の計算結果をうまく再
利用することで計算効率を上げる手法のこと。

• 「途中の計算結果を再利用」＝「同じ計算をしない」ということ
• 難しいように見えて考え方自体は単純

Some examples
• 部分和問題 - Fibonacci numbers
• コイン両替問題 – counting coins
• 最長増加部分列
• 連鎖行列積
• 巡回セールスマン



The Fibonacci numbers problem 
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Example: Fibonacci numbers  (cont.)

Computing the nth Fibonacci number using bottom-up iteration and 

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…    

F(n-2) = 

F(n-1) = 

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space
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n Q: What if we solve it recursively?
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Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1)             +             F(n-2)

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4)

...



A naïve implementation of a function

Below is one of the execution image

The time complexity is O(2n)

このように最終的に fib(0) と fib(1) の呼び出しに収束し、fib(0) と fib(1) の

呼び出し回数の和が結果の値となる。この方法を用いたフィボナッチ数列
の計算量は O ( 2 n ) の指数関数時間となる。



Q: Efficiency:
- time           N?
- space         N?



If we use dynamic programming (bottom-up)

We calculate f(n-2) and f(n-1), save and store the results and them calculate f(n) 
This bottom-up approach method uses O(n) time since it contains a loop that
repeats n − 1 times, but it only takes constant (O(1)) space.

Python version



The coin change problem  

Work in class:

Please find out
- Japanese coin types
- US coin types?



Please find out
- Japanese coin types

1¥, 5¥, 10¥, 50¥, 100¥, 500¥

- US coin types?
5 ¢, 10 ¢, 25 ¢, 50 ¢, 1$
enough coin types?
try to find the minimum number of coin types 

for example, 31¢, 61¢



To find the minimum number of US coins to make any amount

Try to count 31c
?

Try to count 63c
?
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Count coins – the minimum number

To find the minimum number of US coins to make any amount

The greedy method always works

– At each step, just choose the largest coin that does not overshoot the 
desired amount: 31¢=25+?

• The greedy method would not work if we did not have 5¢ coins

– For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1), but 
we can do it with four (10+10+10+1)

• The greedy method also would not work if we had a 21¢ coin

– For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but we 
can do it with three (21+21+21)

? How can we find 

the minimum number of coins for any given coin set?

?
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Coin set for examples

• For the following examples, we will assume 
coins in the following denominations:

1¢ 5¢     10¢     21¢     25¢

• We’ll use 63¢ as our goal
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Coin set for examples

 For the following examples, we will assume coins in the 

following denominations:

1¢     5¢     10¢     21¢     25¢

 We’ll use 63¢ as our goal

(work in class: Everyone thinks about it, 

 how to solve it?)
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A simple solution

 We always need a 1¢ coin, otherwise no solution exists for 

making one cent

 To make K cents:

 If there is a K-cent coin, then that one coin is the minimum

 Otherwise, for each value i < K,

 Find the minimum number of coins needed to make i cents

 Find the minimum number of coins needed to make K - i cents

 Choose the i that minimizes this sum

 This algorithm can be viewed as divide-and-conquer, or as brute 

force (by exhaustion, a method of mathematical proof)

 This solution is very recursive

 It requires exponential work

 It is infeasible to solve for 63¢
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Another solution

 We can reduce the problem recursively by choosing the 
first coin, and solving for the amount that is left

 For 63¢:

 One 1¢ coin plus the best solution for 62¢

 One 5¢ coin plus the best solution for 58¢

 One 10¢ coin plus the best solution for 53¢

 One 21¢ coin plus the best solution for 42¢

 One 25¢ coin plus the best solution for 38¢

 Choose the best solution from among the 5 given above

 Instead of solving 62 recursive problems, we solve 5

(62, 58, 53, 42, 38) using 1, 5, 10, 21, 25

 This is still a very expensive algorithm 



Work in class:

Refer to the above, to draw the case of 63 using 1¢ 5¢ 10¢ 21¢ 25¢
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A dynamic programming solution

 Idea: Solve first for one cent, then two cents, then three cents, etc., 

up to the desired amount

 Save each answer in an array !

 For each new amount N, compute all the possible pairs of 

previous answers which sum to N

 For example, to find the solution for 13¢,

 First, solve for all of 1¢, 2¢, 3¢, ..., 12¢

 Next, choose the best solution among:

 Solution for 1¢   +   solution for 12¢

 Solution for 2¢   +   solution for 11¢

 Solution for 3¢   +   solution for 10¢

 Solution for 4¢   +   solution for 9¢

 Solution for 5¢   +   solution for 8¢

 Solution for 6¢   +   solution for 7¢
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Example

 Suppose coins are 1¢, 3¢, and 4¢

 There’s only one way to make 1¢ (one coin)

 To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)

 To make 3¢, just use the 3¢ coin (one coin)

 To make 4¢, just use the 4¢ coin (one coin)

 To make 5¢, try

 1¢ + 4¢ (1 coin + 1 coin = 2 coins)

 2¢ + 3¢ (2 coins + 1 coin = 3 coins)

 The first solution is better, so best solution is 2 coins

 To make 6¢, try

 1¢ + 5¢ (1 coin + 2 coins = 3 coins)

 2¢ + 4¢ (2 coins + 1 coin = 3 coins)

 3¢ + 3¢ (1 coin + 1 coin = 2 coins) – best solution

 Etc.



In Python



In Python (continue…)



Change to make for 11 



……

“j” is the coin types can be used
e,g,  coin 7 uses 1, 5 (1+1+5)

x2





Point:

Use what are in the 
coin used before
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How good is the algorithm?

 The first algorithm is recursive, with a branching factor 
of up to 62

 Possibly the average branching factor is somewhere around 
half of that (31)

 The algorithm takes exponential time, with a large base

 The second algorithm is much better—it has a 
branching factor of 5

 This is exponential time, with base 5

 The dynamic programming algorithm is O(N*K), where 
N is the desired amount and K is the number of different 
kinds of coins



http://www.geocities.jp/m_hiroi/light/pyalgo23.html

http://ailaby.com/dynamic/

http://www.geocities.jp/m_hiroi/light/pyalgo23.html
http://ailaby.com/dynamic/


Other problems

Knapsack problem ナップザック問題
work in class
資料を調べてください

All-pairs shortest paths problem 
Optimal Binary Search Trees
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Comparison with divide-and-conquer
 Divide-and-conquer algorithms split a problem into separate 

subproblems, solve the subproblems, and combine the results 

for a solution to the original problem

 Example: Quicksort

 Example: Mergesort

 Example: Binary search

 Divide-and-conquer algorithms can be thought of as top-down

algorithms

 In contrast, a dynamic programming algorithm proceeds by 

solving small problems, remembering the results, then 

combining them to find the solution to larger problems

 Dynamic programming can be thought of as bottom-up



Exercises
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Ex 3.1

Understand the dynamic programming approach to solve the coin 

problem and other problems.

Ex 3.2

Divide-and-conquer is a top-down technique while dynamic 

programming is a bottom-up technical. Both can be applied to 

solve coin change problem. 

3.2.1 Please run dynamic program in in Python to solve coin 63 

cents problem.

3.2.2 Please make Divide-and-conquer approach to solve the coin 

change problem, in Python, please refer to next three pages.  

3.2.3 Compare their performance to see which is faster. 
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Java source code
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http://interactivepython.org/courselib/static/pythonds/Recursion/DynamicoPrgrammin
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https://github.com/OSU-CS-325/Project_Two_Coin_Change
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