
アルゴリズムの設計と解析

教授： 黄 潤和 （W4022）
rhuang@hosei.ac.jp

SA： 広野 史明 （A4/A10）
fumiaki.hirono.5k@stu.hosei.ac.jp

Divide and Conquer
Dynamic Programming

L3. 動的計画法
Dynamic Programming

What is dynamic programming?

Dynamic Programming is a general algorithm design technique
for solving problems defined by or formulated as recurrences
with overlapping sub-instances. Invented by American
mathematician Richard Bellman in the 1950s to solve
optimization problems and later assimilated by CS

動的計画法（どうてきけいかくほう、英: Dynamic Programming,
DP）は、計算機科学の分野において、アルゴリズムの分類の1
つである。対象となる問題を複数の部分問題に分割し、部分問
題の計算結果を記録しながら解いていく手法を総称してこう呼
ぶ。

ボトムアップである（つまり、部分問題を解き終わるまで問題全体に手を出
してはいけない）

Main idea?
1. set up a recurrence relating a solution to a larger instance to

solutions of some smaller instance
2. solve smaller instances once
3. record solutions in a table
4. extract solution to the initial instance from that table

直接計算すると大きな時間がかかってしまう問題に対し、途中の計算結果をうまく再
利用することで計算効率を上げる手法のこと。

• 「途中の計算結果を再利用」＝「同じ計算をしない」ということ
• 難しいように見えて考え方自体は単純

Some examples
• 部分和問題 - Fibonacci numbers
• コイン両替問題 – counting coins
• 最長増加部分列
• 連鎖行列積
• 巡回セールスマン

The Fibonacci numbers problem

8-7Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers (cont.)

Computing the nth Fibonacci number using bottom-up iteration and

recording results:

F(0) = 0

F(1) = 1

F(2) = 1+0 = 1

…

F(n-2) =

F(n-1) =

F(n) = F(n-1) + F(n-2)

Efficiency:
- time
- space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

n
n Q: What if we solve it recursively?

8-8Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “Introduction to the Design & Analysis of Algorithms,” 2nd ed., Ch. 8

Example: Fibonacci numbers

• Recall definition of Fibonacci numbers:

F(n) = F(n-1) + F(n-2)

F(0) = 0

F(1) = 1

• Computing the nth Fibonacci number recursively (top-down):

F(n)

F(n-1) + F(n-2)

F(n-2) + F(n-3) F(n-3) + F(n-4)

...

A naïve implementation of a function

Below is one of the execution image

The time complexity is O(2n)

このように最終的に fib(0) と fib(1) の呼び出しに収束し、fib(0) と fib(1) の

呼び出し回数の和が結果の値となる。この方法を用いたフィボナッチ数列
の計算量は O (2 n) の指数関数時間となる。

Q: Efficiency:
- time N?
- space N?

If we use dynamic programming (bottom-up)

We calculate f(n-2) and f(n-1), save and store the results and them calculate f(n)
This bottom-up approach method uses O(n) time since it contains a loop that
repeats n − 1 times, but it only takes constant (O(1)) space.

Python version

The coin change problem

Work in class:

Please find out
- Japanese coin types
- US coin types?

Please find out
- Japanese coin types

1¥, 5¥, 10¥, 50¥, 100¥, 500¥

- US coin types?
5 ¢, 10 ¢, 25 ¢, 50 ¢, 1$
enough coin types?
try to find the minimum number of coin types

for example, 31¢, 61¢

To find the minimum number of US coins to make any amount

Try to count 31c
?

Try to count 63c
?

15

Count coins – the minimum number

To find the minimum number of US coins to make any amount

The greedy method always works

– At each step, just choose the largest coin that does not overshoot the
desired amount: 31¢=25+?

• The greedy method would not work if we did not have 5¢ coins

– For 31 cents, the greedy method gives seven coins (25+1+1+1+1+1+1), but
we can do it with four (10+10+10+1)

• The greedy method also would not work if we had a 21¢ coin

– For 63 cents, the greedy method gives six coins (25+25+10+1+1+1), but we
can do it with three (21+21+21)

? How can we find

the minimum number of coins for any given coin set?

?

16

Coin set for examples

• For the following examples, we will assume
coins in the following denominations:

1¢ 5¢ 10¢ 21¢ 25¢

• We’ll use 63¢ as our goal

17

Coin set for examples

 For the following examples, we will assume coins in the

following denominations:

1¢ 5¢ 10¢ 21¢ 25¢

 We’ll use 63¢ as our goal

(work in class: Everyone thinks about it,

 how to solve it?)

18

A simple solution

 We always need a 1¢ coin, otherwise no solution exists for

making one cent

 To make K cents:

 If there is a K-cent coin, then that one coin is the minimum

 Otherwise, for each value i < K,

 Find the minimum number of coins needed to make i cents

 Find the minimum number of coins needed to make K - i cents

 Choose the i that minimizes this sum

 This algorithm can be viewed as divide-and-conquer, or as brute

force (by exhaustion, a method of mathematical proof)

 This solution is very recursive

 It requires exponential work

 It is infeasible to solve for 63¢

19

Another solution

 We can reduce the problem recursively by choosing the
first coin, and solving for the amount that is left

 For 63¢:

 One 1¢ coin plus the best solution for 62¢

 One 5¢ coin plus the best solution for 58¢

 One 10¢ coin plus the best solution for 53¢

 One 21¢ coin plus the best solution for 42¢

 One 25¢ coin plus the best solution for 38¢

 Choose the best solution from among the 5 given above

 Instead of solving 62 recursive problems, we solve 5

(62, 58, 53, 42, 38) using 1, 5, 10, 21, 25

 This is still a very expensive algorithm

Work in class:

Refer to the above, to draw the case of 63 using 1¢ 5¢ 10¢ 21¢ 25¢

21

A dynamic programming solution

 Idea: Solve first for one cent, then two cents, then three cents, etc.,

up to the desired amount

 Save each answer in an array !

 For each new amount N, compute all the possible pairs of

previous answers which sum to N

 For example, to find the solution for 13¢,

 First, solve for all of 1¢, 2¢, 3¢, ..., 12¢

 Next, choose the best solution among:

 Solution for 1¢ + solution for 12¢

 Solution for 2¢ + solution for 11¢

 Solution for 3¢ + solution for 10¢

 Solution for 4¢ + solution for 9¢

 Solution for 5¢ + solution for 8¢

 Solution for 6¢ + solution for 7¢

22

Example

 Suppose coins are 1¢, 3¢, and 4¢

 There’s only one way to make 1¢ (one coin)

 To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)

 To make 3¢, just use the 3¢ coin (one coin)

 To make 4¢, just use the 4¢ coin (one coin)

 To make 5¢, try

 1¢ + 4¢ (1 coin + 1 coin = 2 coins)

 2¢ + 3¢ (2 coins + 1 coin = 3 coins)

 The first solution is better, so best solution is 2 coins

 To make 6¢, try

 1¢ + 5¢ (1 coin + 2 coins = 3 coins)

 2¢ + 4¢ (2 coins + 1 coin = 3 coins)

 3¢ + 3¢ (1 coin + 1 coin = 2 coins) – best solution

 Etc.

In Python

In Python (continue…)

Change to make for 11

……

“j” is the coin types can be used
e,g, coin 7 uses 1, 5 (1+1+5)

x2

Point:

Use what are in the
coin used before

29

How good is the algorithm?

 The first algorithm is recursive, with a branching factor
of up to 62

 Possibly the average branching factor is somewhere around
half of that (31)

 The algorithm takes exponential time, with a large base

 The second algorithm is much better—it has a
branching factor of 5

 This is exponential time, with base 5

 The dynamic programming algorithm is O(N*K), where
N is the desired amount and K is the number of different
kinds of coins

http://www.geocities.jp/m_hiroi/light/pyalgo23.html

http://ailaby.com/dynamic/

http://www.geocities.jp/m_hiroi/light/pyalgo23.html
http://ailaby.com/dynamic/

Other problems

Knapsack problem ナップザック問題
work in class
資料を調べてください

All-pairs shortest paths problem
Optimal Binary Search Trees

32

Comparison with divide-and-conquer
 Divide-and-conquer algorithms split a problem into separate

subproblems, solve the subproblems, and combine the results

for a solution to the original problem

 Example: Quicksort

 Example: Mergesort

 Example: Binary search

 Divide-and-conquer algorithms can be thought of as top-down

algorithms

 In contrast, a dynamic programming algorithm proceeds by

solving small problems, remembering the results, then

combining them to find the solution to larger problems

 Dynamic programming can be thought of as bottom-up

Exercises

33

Ex 3.1

Understand the dynamic programming approach to solve the coin

problem and other problems.

Ex 3.2

Divide-and-conquer is a top-down technique while dynamic

programming is a bottom-up technical. Both can be applied to

solve coin change problem.

3.2.1 Please run dynamic program in in Python to solve coin 63

cents problem.

3.2.2 Please make Divide-and-conquer approach to solve the coin

change problem, in Python, please refer to next three pages.

3.2.3 Compare their performance to see which is faster.

34

35

36

Java source code

37

References:

http://interactivepython.org/courselib/static/pythonds/Recursion/DynamicoPrgrammin

g.html#lst-change2

https://www.cis.upenn.edu/

(30-dynamic-programming.ppt)

https://github.com/OSU-CS-325/Project_Two_Coin_Change

http://interactivepython.org/courselib/static/pythonds/Recursion/DynamicoPrgramming.html#lst-change2
https://www.cis.upenn.edu/
https://github.com/OSU-CS-325/Project_Two_Coin_Change

