TILTYX LDOEET LR

= EH

Goal

N

[(BROBEEBN (FEFEsh)]

The goal of this course is to enhance students’ knowledge of
data streture and skill of applying associated algorithms. This
course will cover the content review of learned data structures
and algorithms related tree and graph, and plus algorithm

analysis and design technigues.

FEHE:

The objectives of this course are to make students firmly laying
good foundation of data structures and algorithms, and one-step
further comprehensively understanding algorithm analysis and
having design and implementation skills in Python, Java, or
other programming language.

N

[FF 2 b (HFE))
"Introduction to
The design and Analysis of Algorithms”, Anany Levitin,

Pubisher: Pearson,
ISBN-13: 978-0-13-231681-1

[ZE&]
&% Introduction to Algorithms, Third Edition

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein

tihicft: The MIT Press

i hREE: 2009 F

[P HRFFE 0D 77 ik & 2]
HIFE AR (20%) & e ETEER (80%)

N

Contents (L1 - Introduction)

#What is an Algorithm?
#How to design?

#How to analyze?

N

Why study algorithms?

Algorithms play the central role both in the
= Science

_ Of computing
m practice

#From a practical standpoint

- you have to know a standard set of important algorithms
- you should be able to design new algorithms

#From theoretical standard

- the study of algorithms is the core of computer science
related to many other fields
useful in developing analytical skills

5

\I ntroduction

% : : bi
What is an Algorithm? BONEE

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input

in a finite amount of time.
SEWE

problem

|

algorithm

|

input —— “computer” . output

N

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3'd ed., Ch. 1
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

N

Two main approaches

1. from typical problem types
2. from algorithm design techniques

1. from typical problem types

N

(a number of algorithms to a problem type)

s Sorting, searching, graphs, ...
+ Bubble sort, quick sort, merge sort, heap sort

s Merits:

+ Enables the efficiency comparison between
different algorithms

= Disadvantages:

+ Sacrifices the conceptual clearness on
algorithm design techniques :

Some Well-known Computational Problems

N

L/

vV V VYV VY ¥V V VY V V VY

Sorting

Searching

Shortest paths in a graph
Minimum spanning tree
Primality testing

Traveling salesman problem
Knapsack problem

Chess

Towers of Hanol

Program termination

e.g. Sorting problem
There are many different algorithms

?+if':f—|% O(nlgn) O(nlgn) O(nlgn) X HBiLE
£=7Y—k Ofnlgn) O(nlgn) O(nlgn) O EE'{E@%F

. = i .
D4t 06 o(ign otmigm) O (ZEMEE

10

e.g. Greatest common factor &HKX2A$9%

N

L/

Problem: Find gcd(m,n),
the greatest common divisor of two nonnegative,
not both zero integers mand n
e.g.: gcd(60,24) = 12, gcd(60,0) = 60, ...

(1) Euclid’s algorithm: it is based on repeated application of equality
gcd(m,n) = gcd(n, m mod n)
until the second number becomes O,
which makes the problem trivial.

e.g.: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

11

Other methods

(to the same problem: Greatest common factor)

N

L/

(2) Brute force solution
Step 1 Assign the value of min{/m,n} to ¢

Step 2 Divide mby t. If the remainder is 0, go to Step 3;
otherwise, go to Step 4

Step 3 Divide nby t. If the remainder is O, return ¢ and stop;
otherwise, go to Step 4

Step 4 Decrease tby 1 and go to Step 2
(3) Finding the prime factors
Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of 7
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime factors

and return it as gcd(1m,n)60=2x2x3x5 . . . |
: - 2 = 2x2x2x%3
.Common prime factors are: 2,2,3
. gdc(60,24) = 2x2x3 = 12

2. from algorithm design techniques

N

L/

Some well-known algorithm design techniques

» Divide and conquer

» Decrease and conquer

» Transform and conquer

» Brute force

» Greedy approach

» Dynamic programming

» Backtracking and branch-and-bound
» Space and time tradeoffs

13

A design technique to solve different problems

N

L/

e. g. Divide and Conquer technique (% El#%:8) which is
used in many different algorithms for solving different
problems.

For example

- Searching

- Sorting

- Matrix multiplication

14

Which i1s better?

N

Two main Issues:
(1) How to design algorithms?
(solve the problem)

(2) How to analyze algorithms?
(evaluate/optimize the algorithms)

15

N

Algorithm design techniques

Brute force

Divide and conquer
Decrease and conquer
Transform and conquer

Space and time tradeoffs
Greedy approach
Dynamic programming
Iterative improvement
Backtracking

Branch and bound

LA A 2R 2 O I I 2R R B

16

Analysis of algorithms

N

#How good is the algorithm?
m correctness

= space efficiency, usually in terms of the amount of

« fast memory, but disk volume and network
bandwidth shall be taken as another sort of limited
resource for tasks related to big data.

#Does there exist a better algorithm?

s lower bounds
= Ooptimality

17

N

For example: sorting

Rearrange the items of a given list in ascending order.
= Input: A sequence of n numbers <a,, a,, ..., a,>

= Output: A reordering <a'y, a,, ..., a ;> of the input
sequence such thata ,<a ,< <a,

Why sorting?

= Help searching

= Algorithms often use sorting as a key subroutine.
Sorting key

m A specially chosen piece of information used to guide
sorting. E.g., sort student records by student ID.

1-18

プレゼンター
プレゼンテーションのノート

An example:

/] 2 3 4 5 & | | 1l 2 3 4 5 6

% (a) ? EALAREE by | 2 cy [2(4]5 I {3
Approach—-> E

| | 2 4 5 &

fe) || a0 [1]2]3]4]5]s]

Figure 2.2 The operation of INSERTION-S08T on the armay 4 = (5, 2, 4,6, 1, 3}, Array indices
appeir above the rectangles, and values stored in the arvay positions appear within the rectangles.
(al=ie) The iterations of the for loop of lings 1-8. In each iteration, the black rectangle holds the
key taken from A[f], which is compared with the values in shaded rectangles to its left in the test of
ling 5. Shaded arrows show array values moved one position to the right in line &, and black arrows
indicate where the key moves to in line 8. (F) The final sorted array.

[NSERTION-SORT(A)

for j = 2to A.length
key = A[j]
M Insert A[j] into the sorted sequence A[l.. 7 —1].
P=j—1
while i = 0 and A[i] = key
Ali + 1] = A[i]
i=1i-1
Ali + 1] = key

Pseudo code
9

h e el bd ==

o0 =1 On

Analysis of Algorithms 19

INSERTION-SORT(A) cost times

I for j = 2to A length) "
g key = A[Jf] 3 n—1
p 3 /Y Insert A[j] into the sorted
N sequence A[l..j —1]. 0 nm—1
4 = j-1 €4 n—1
5 while i = 0 and A[i] = kev €5 Yol
6 Ali + 1] = A[i] Ce Y= 1)
7 i=i—1 ¢s Y1)
2 Ali + 1] = kev Cg n—1
f Fl
Tin) = cn+em—D+am—1)+ed i+ (1—1)
the best case occurs f=2 =2
if the array is already sorted, ——) n
t,=1 +e7) (= 1)+ csln—1).

f=2

Tin) = em+an—=1)+4cgn—=1)+es(n—=1)4+cgln—-1)
= (ey+ert+es+es+opn—(ca+ca+0s+05).

the best-case running time is 6(n)

Analysis of Algorithms 20

1
Z =n{n+|l | T'in) = ,:rl.a;r-|—{.'3|[n—]}_|_{r4{n—]}-|—{.'5(m:”+ :I—I)

2
nin—1 nin — 1
and |:> -|—4:'..;,(5 })-I-L'ql(5 })+{.'3I[n—|}
— nin—1) : . .
(j-1= _ (%, G 2 o o o 5B T
E 2 = (2+2—|—2)n +(fl+i3+u+2 D 2-|—r.3)ﬂ

— {{-'1 + g+ 5+ lf':g]' .
A worst-case running time of 6(n?)

Oo(n?)
bound on worst-case running time of insertion sort

(}-notation

The &-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use (-notation. For a given func-

tion gi{n), we denote by O(g(n)) (pronounced “big-oh of g of ™ or sometimes
just “oh of g of #™) the set of functions

Ng(n)) = { f(n): there exist positive constants ¢ and »ny such that
0= fin)=cgn)foralln = ngt.

We use O-notation o give an upper bound on a function, to within a constant

Efficiency is very much depended on data structure

N

“ Apart from the linked list, there are other often used
data structure.

‘Often used data structures
@ Array

= Sequentially ordered, = Advanced modeling,
random access, update but costly
@ linked list @ Tree
= Fast insertion, deletion = Divide and conquer
4 Stack # set and dictionary
= Firstin last out » Implemented as array,
Queue list, or tree

= First in first out

22

About this course

N

- _ Textbook

e —

Introduction to
The Design and Analysis of Algorithms E

s e .

e

-

Anany Levitin, Addison-Wesley, 2011

Reference book

INTRODUCTION TO

Thomas H. Cor-men, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, MIT Press, 2009
Anany Levitin, Addison-Wesley, 2011

23

N

About this course
#Teaching plan

It is expected to have slight adjustments

#Evaluation

- Mid-term: exercise problems (20%)
- Exams: final exam (80%)

24

Exercise 1-1

N

What is the output of Test1(200) ?
Test1(200) DEHAFERIIMATI M ?
TestllERDT7ILT)XLTY,

Algorithm Test1(n)
b« 0
for/< 1to ndo
if /mod 6 =0then b« b+ 1
else if /mod 9 = 0 then b« b +10
return b

25

Exercise 1-2

N

What are the output of Test2(100)?
Test2(100) D AFERIERITI M ?
Test2(IRDT7ILITY X LTI,

Algorithm Test2(n)
b« 0
for /< 1to ndo
forfi<-1-to-fdeo
b« b +1
return b

26

Exercise 1-3

N

What are the output of Test3(1000) ?
Test3(1000) D HE NFERIZAITI M ?
Test3[IRDTILITY X LTI,

Algorithm Test3(n)
/< 1
b« 0
while /< ndo
b— b+1
/< 2/
return b

27

	アルゴリズムの設計と解析
	Goal
	スライド番号 3
	Contents (L1 - Introduction)
	Why study algorithms?
	Introduction 　
	Two main approaches
	1. from typical problem types
	スライド番号 9
	スライド番号 10
	e.g. Greatest common factor
	Other methods �(to the same problem: Greatest common factor)
	2. from algorithm design techniques
	スライド番号 14
	Which is better?
	Algorithm design techniques
	Analysis of algorithms
	For example: sorting
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	About this course
	About this course
	Exercise 1-1
	Exercise 1-2
	Exercise 1-3

