
アルゴリズムの設計と解析

黄 潤和

Goal

2

到達目標：

The objectives of this course are to make students firmly laying
good foundation of data structures and algorithms, and one-step
further comprehensively understanding algorithm analysis and
having design and implementation skills in Python, Java, or
other programming language.

3

Contents (L1 - Introduction)

What is an Algorithm?
How to design?
How to analyze?

4

Why study algorithms?
Algorithms play the central role both in the
 science
 practice

From a practical standpoint
 - you have to know a standard set of important algorithms
 - you should be able to design new algorithms

From theoretical standard
 - the study of algorithms is the core of computer science
 related to many other fields
 useful in developing analytical skills

5

Of computing

Introduction
What is an Algorithm?
An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input
in a finite amount of time.

A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 1
©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

合理的な

ambiguous
あいまいな

Two main approaches

1. from typical problem types
2. from algorithm design techniques

7

1. from typical problem types

 (a number of algorithms to a problem type)

8

9

 Sorting
 Searching
 Shortest paths in a graph
 Minimum spanning tree
 Primality testing
 Traveling salesman problem
 Knapsack problem
 Chess
 Towers of Hanoi
 Program termination

Some Well-known Computational Problems

10

e.g. Sorting problem
 There are many different algorithms

e.g. Greatest common factor

Problem: Find gcd(m,n),
 the greatest common divisor of two nonnegative,
 not both zero integers m and n
 e.g.: gcd(60,24) = 12, gcd(60,0) = 60, …

(1) Euclid’s algorithm: it is based on repeated application of equality
 gcd(m,n) = gcd(n, m mod n)
 until the second number becomes 0,
 which makes the problem trivial.
 e.g.: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

11

最大公約数

Other methods
(to the same problem: Greatest common factor)

(2) Brute force solution
 Step 1 Assign the value of min{m,n} to t
 Step 2 Divide m by t. If the remainder is 0, go to Step 3;

 otherwise, go to Step 4
 Step 3 Divide n by t. If the remainder is 0, return t and stop;

 otherwise, go to Step 4
 Step 4 Decrease t by 1 and go to Step 2
(3) Finding the prime factors
 Step 1 Find the prime factorization of m
 Step 2 Find the prime factorization of n
 Step 3 Find all the common prime factors
 Step 4 Compute the product of all the common prime factors

 and return it as gcd(m,n)

 12

2. from algorithm design techniques

13

 Divide and conquer
 Decrease and conquer
 Transform and conquer
 Brute force
 Greedy approach
 Dynamic programming
 Backtracking and branch-and-bound
 Space and time tradeoffs

Some well-known algorithm design techniques

14

e. g. Divide and Conquer technique (分割統治) which is
used in many different algorithms for solving different
problems.
For example
- Searching
- Sorting
- Matrix multiplication
- ……

A design technique to solve different problems

15

Which is better?

Two main issues:
(1) How to design algorithms?
 (solve the problem)
(2) How to analyze algorithms?
 (evaluate/optimize the algorithms)

Algorithm design techniques

Brute force
Divide and conquer
Decrease and conquer
Transform and conquer
Space and time tradeoffs
Greedy approach
Dynamic programming
Iterative improvement
Backtracking
Branch and bound
……

 16

Analysis of algorithms
How good is the algorithm?
 correctness
 time efficiency
 space efficiency

Does there exist a better algorithm?
 lower bounds
 optimality

17

1-18

For example: sorting

Rearrange the items of a given list in ascending order.
 Input: A sequence of n numbers <a1, a2, …, an>
 Output: A reordering <a´

1, a´
2, …, a´

n> of the input
sequence such that a´

1≤ a´
2 ≤ … ≤ a´

n.
Why sorting?
 Help searching
 Algorithms often use sorting as a key subroutine.

Sorting key
 A specially chosen piece of information used to guide

sorting. E.g., sort student records by student ID.

プレゼンター
プレゼンテーションのノート

Analysis of Algorithms 19

An example:

Approach

Pseudo code


Analysis of Algorithms 20

 the best-case running time is θ(n)

the best case occurs
if the array is already sorted,
t j =1

Analysis of Algorithms 21

A worst-case running time of θ(n2)

O(n2)
bound on worst-case running time of insertion sort

22

Efficiency is very much depended on data structure

Apart from the linked list, there are other often used
data structure.

About this course

23

Reference book

Thomas H. Cor-men, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, MIT Press, 2009
Anany Levitin, Addison-Wesley, 2011

Textbook

Anany Levitin, Addison-Wesley, 2011

About this course
Teaching plan

 It is expected to have slight adjustments

Evaluation
 - Mid-term: exercise problems (20%)

 - Exams: final exam (80%)

24

Exercise 1-1

What is the output of Test1(200) ?
 Test1（200）の出力結果は何ですか？
 Test1は次のアルゴリズムです。

 Algorithm Test1(n)
 b ← 0
 for i  1 to n do
 if i mod 6 = 0 then b ← b + 1
 else if i mod 9 = 0 then b ← b +10
 return b

25

Exercise 1-2
What are the output of Test2(100)?
Test2（100）の出力結果は何ですか？
Test2は次のアルゴリズムです。

Algorithm Test2(n)
 b ← 0
 for i  1 to n do
 for j  1 to i do
 b ← b +1
 return b

26

Exercise 1-3
What are the output of Test3(1000) ?
Test3（1000 ）の出力結果は何ですか？
Test3は次のアルゴリズムです。

Algorithm Test3(n)
 i ← 1
 b ← 0
 while i < n do
 b ← b + 1
 i ← 2i
 return b

27

	アルゴリズムの設計と解析
	Goal
	スライド番号 3
	Contents (L1 - Introduction)
	Why study algorithms?
	Introduction 　
	Two main approaches
	1. from typical problem types
	スライド番号 9
	スライド番号 10
	e.g. Greatest common factor
	Other methods �(to the same problem: Greatest common factor)
	2. from algorithm design techniques
	スライド番号 14
	Which is better?
	Algorithm design techniques
	Analysis of algorithms
	For example: sorting
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	About this course
	About this course
	Exercise 1-1
	Exercise 1-2
	Exercise 1-3

