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Abstract 
 

Decision tree learning algorithm has been successfully used in expert 
systems in capturing knowledge. The main task performed in these systems is 
using inductive methods to the given values of attributes of an unknown object 
to determine appropriate classification according to decision tree rules. We 
examine the decision tree learning algorithm ID3 and implement this algorithm 
using Java programming. We first implement basic ID3 in which we dealt with 
the target function that has discrete output values. We also extend the domain 
of ID3 to real-valued output, such as numeric data and discrete outcome 
rather than simply Boolean value. The Java applet provided at last section 
offers a simulation of decision-tree learning algorithm in various situations. 
Some shortcomings are discussed in this project as well.  

 
 

1   Introduction 

1.1 What is Decision Tree? 

What is decision tree: A decision tree is a tree in which each branch node 
represents a choice between a number of alternatives, and each leaf node 
represents a decision. 

 

Decision tree are commonly used for gaining information for the purpose of 
decision -making. Decision tree starts with a root node on which it is for users 
to take actions. From this node, users split each node recursively according to 
decision tree learning algorithm. The final result is a decision tree in which 
each branch represents a possible scenario of decision and its outcome. 

   

 



1.2 What is decision tree learning algorithm?  

  

'Decision tree learning is a method for approximating discrete-valued target 
functions, in which the learned function is represented by a decision tree. 
Decision tree learning is one of the most widely used and practical methods 
for inductive inference'. (Tom M. Mitchell,1997,p52)  

Decision tree learning algorithm has been successfully used in expert 
systems in capturing knowledge. The main task performed in these systems is 
using inductive methods to the given values of attributes of an unknown object 
to determine appropriate classification according to decision tree rules. 

Decision trees classify instances by traverse from root node to leaf node. We 
start from root node of decision tree, testing the attribute specified by this 
node, then moving down the tree branch according to the attribute value in the 
given set. This process is the repeated at the sub-tree level. 

What is decision tree learning algorithm suited for: 

1. Instance is represented as attribute-value pairs. For example, attribute 
'Temperature' and its value 'hot', 'mild', 'cool'. We are also concerning to 
extend attribute-value to continuous-valued data (numeric attribute value) in 
our project. 

2.The target function has discrete output values. It can easily deal with 
instance which is assigned to a boolean decision, such as 'true' and 'false', 
'p(positive)' and 'n(negative)'. Although it is possible to extend target to real-
valued outputs, we will cover the issue in the later part of this report. 

3.The training data may contain errors. This can be dealt with pruning 
techniques that we will not cover here.  

The 3 widely used decision tree learning algorithms are: ID3, ASSISTANT 
and C4.5. We will cover ID3 in this report. 

 

  

1.3 Why is Decision Tree Learning an attractive Inductive Learning 
method 

'Purely inductive learning methods formulate general 
hypotheses by finding empirical regularities over the training 
examples.'  

(Tom M. Mitchell,1997,p334 ) 



For inductive learning, decision tree learning is attractive for 3 
reasons: 

1. Decision tree is a good generalization for unobserved 
instance, only if the instances are described in terms of 
features that are correlated with the target concept. 

2. The methods are efficient in computation that is 
proportional to the number of observed training instances. 

3. The resulting decision tree provides a representation of 
the concept that appeals to human because it renders the 
classification process self-evident. 

( Paul Utgoff & Carla Brodley, 1990) 

 
 
 

2 Decision Tree Learning Algorithm — ID3 Basic  
 

2.1. ID3 Basic 

ID3 is a simple decision tree learning algorithm developed by 
Ross Quinlan (1983). The basic idea of ID3 algorithm is to 
construct the decision tree by employing a top-down, greedy 
search through the given sets to test each attribute at every tree 
node. In order to select the attribute that is most useful for 
classifying a given sets, we introduce a metric---information 
gain. 

To find an optimal way to classify a learning set, what we need 
to do is to minimize the questions asked (i.e. minimizing the 
depth of the tree). Thus, we need some function which can 
measure which questions provide the most balanced splitting. 
The information gain metric is such a function. 

2.2 Entropy --- measuring homogeneity of a learning set 

(Tom M. Mitchell,1997,p55) 

In order to define information gain precisely, we 
need to discuss entropy first.  

First, lets assume, without loss of generality, that 
the resulting decision tree classifies instances into 
two categories, we'll call them P(positive)and 
N(negative). 



Given a set S, containing these positive and 
negative targets, the entropy of S related to this 
boolean classification is: 

Entropy(S)= 

- P(positive)log2P(positive) - 
P(negative)log2P(negative) 

P(positive): proportion of positive examples in 
S 

P(negative): proportion of negative examples 
in S 

For example, if S is (0.5+, 0.5-) then Entropy(S) is 
1, if S is (0.67+, 0.33-) then Entropy(S) is 0.92, if P 
is (1+, 0-) then Entropy(S) is 0. Note that the more 
uniform is the probability distribution, the greater is 
its information. 

You may notice that entropy is a measure of the 
impurity in a collection of training sets. But how it is 
related to the optimisation of our decision making 
in classifying the instances. What you will see at 
the following will answer this question. 

2.3  Information Gain--- measuring the expected reduction in 
Entropy 

(Tom M. Mitchell,1997,p57) 

As we mentioned before, to minimize the decision 
tree depth, when we traverse the tree path, we 
need to select the optimal attribute for splitting the 
tree node, which we can easily imply that the 
attribute with the most entropy reduction is the 
best choice. 

We define information gain as the expected 
reduction of entropy related to specified attribute 
when splitting a decision tree node. 

The information gain, Gain(S,A) of an attribute A, 

Gain(S,A)= Entropy(S) -  

Sum for v from 1 to n of (|Sv|/|S|) * Entropy(Sv)  



We can use this notion of gain to rank attributes 
and to build decision trees where at each node is 
located the attribute with greatest gain among the 
attributes not yet considered in the path from the 
root.  

The intention of this ordering is:  

1. To create small decision trees so 
that records can be identified after 
only a few decision tree splitting. 

2. To match a hoped for minimalism 
of the process of decision making 

  

 

 

 3 What we have done here 

 

3.1 How we implement ID3 Algorithm here:  

ID3 ( Learning Sets S, Attributes Sets A, Attributesvalues V) 
Return Decision Tree.  

Begin 

Load learning sets first, create decision tree root 
node 'rootNode', add learning set S into root node 
as its subset. 

For rootNode, we compute 
Entropy(rootNode.subset) first 

If Entropy(rootNode.subset)==0, then 
rootNode.subset consists of records 
all with the same value for the 
categorical attribute, return a leaf 
node with decision 
attribute:attribute value;  

If Entropy(rootNode.subset)!=0, then 
compute information gain for each 
attribute left(have not been used in 
splitting), find attribute A with 



Maximum(Gain(S,A)). Create child 
nodes of this rootNode and add to 
rootNode in the decision tree. 

For each child of the rootNode, apply 
ID3(S,A,V) recursively until reach 
node that has entropy=0 or reach 
leaf node. 

End ID3. 

  

3.2 An Example here:  

To describe the operation of ID3, we use a classic 'PlayTennis' 
example. 

The symbolic attribute description: 

Attribute Possible Values 

Outlook sunny, overcast, rain 

Temperature hot, mild, cool 
Humidity high, normal 
Windy true, false 

Decision n(negative), p(positive) 

The Learning set for play tennis example: 

Outlook Temperature Humidity Windy Decision 

sunny hot high false n 

sunny hot high true n 
overcast hot high false p 

rain mild high false p 
rain cool normal false p 
rain cool normal true n 

overcast cool normal true p 
sunny mild high false n 

sunny cool normal false p 
rain mild normal false p 
sunny mild normal true p 

overcast mild high true p 
overcast hot normal false p 



rain mild high true n 

What we need to do with ID3: 

1. Create rootNode, containing the whole learning 
set as its subset, then computer 
Entropy(rootNode.subset) = -(9/14)log2(9/14) - 
(5/14)log2(5/14)=0.940 

2. Compute information gain for each attribute: 

Gain(S,Windy) = Entropy(S)-(8/14)Entropy(S false) - 
(6/14)Entropy(S true) =0.048 

Gain(S,Humidity) =0.151 

Gain(S,Temperature)=0.029 

Gain(S, Outlook) = 0.246 

3. Select attribute with the maximum information 
gain, which is 'outlook' for splitting. We 
have:(Note: the database URL here should be 
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/tenni
s.db' when you use our applet online.) 

 

  



4.Apply ID3 to each child node of this root, until 
leaf node or node that has entropy=0 are reached. 
We have decision tree described as below: 

 

  

 

3.3 Dealing with continuous-valued attributes:  

  

Initial definition of ID3 is restricted in dealing with 
discrete sets of values. It handles symbolic 
attribute effectively. However, we have to extend it 
sphere to continuous-valued attributes (numeric 
attribute) to fit the real world scenario. The 
algorithm here we use is described at Tom M. 
Mitchell's 'Machine Learning'. (Tom M. 
Mitchell,1997,p72-73) 

What we have done is to define new discrete 
valued attributes that partition the continuous-
valued attribute into symbolic attribute again. 

As an example, we included another database file 
(tb.db) in which we added numeric attributes. The 
format is as below: 



Outlook Temperature Humidity Windy Decision 

sunny hot 0.9 false n 

sunny hot 0.87 true n 
overcast hot 0.93 false p 

rain mild 0.89 false p 
rain cool 0.80 false p 
rain cool 0.59 true n 

overcast cool 0.77 true p 
sunny mild 0.91 false n 

sunny cool 0.68 false p 
rain mild 0.84 false p 
sunny mild 0.72 true p 

overcast mild 0.49 true p 
overcast hot 0.74 false p 

rain mild 0.86 true n 

For humidity attribute, we need to create a new 
boolean value that is true when humidity<=c and 
false otherwise. The only thing left is to compute 
the best threshold c. 

In our example, the most information gain is 
attribute 'outlook', (see 5.2). In the subset rooted at 
'outlook:sunny', we would like to compute the 
information gain for 'Humidity' which is a numeric 
attribute. To do this, first, we sort humidity as 
below:  

Humidity 0.68 0.72 0.87 0.9 0.91 
Playtennis p p n n n 

We would like to pick a threshold that produces the 
greatest information gain. By sorting the numeric 
attribute values, then identifying adjacent 
examples that differ in their target classification, 
we can generate a set of candidate threshold. 
Then we compute information gain for each 
candidate and find the best one for splitting. The 
candidate thresholds for this example is fortunate 
1: 

Humidity>(0.72+0.87)/2 that is Humidity>0.795, 
with the information gain G(S,Humidity)=0.97. If we 



have more than 1 candidate here, we just need to 
find the best information gain one. 

After we include continuous-valued attribute in, the 
databases and the result of decision tree look like 
as below: 

(Note: the database URL here should be 
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/tb.db
' when you use our applet online.) 

 

In the end, we also plan to include complex 
databases such as, 'iris.db', 'german.db', 'zoo.db', 
etc. These databases can be found in our DT1 
directory. 

3.4 Extending ID3 to real-valued data:  

Just as we mentioned before, ID3 is quite efficient 
in dealing with the target function that has discrete 
output values. It can easily deal with instance 
which is assigned to a boolean decision, such as 
'true' and 'false', 'p (positive)' and 'n (negative)'. It 
is possible to extend target to real-valued outputs.  

When we compute information gain in our 
'Function.java', what we concern is not just the 
boolean decision gained from decision tree 
inductive learning, we try to extend target function 
to real-valued outputs. Such as in our example, 



'zoo.db', the final decision is not simple boolean 
value but an array of discrete values. You will see 
the result as below: 

(Note:The database URL here should be 
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/zoo.
db' rather than the one displayed as below when 
you use our applet online) 

 

 

  

4  Shortcoming of ID3 

4. 1 Scenario 1: 

'A significant shortcoming of ID3 is that the space 
of legal splits at a node is impoverished. A split is a 
partition of the instance space that results from 
placing a test at a decision tree node. ID3 and its 
descendants only allow testing a single attribute 
and braching on the outcome of that test' ( Paul 
Utgoff & Carla Brodley, 1990) 

During our implementation of ID3, we found that 
sometimes, we can not gain a result using split 
creteria provided by ID3. Such as in dealing with 
'titanic.db', you may find that we can ot gain a 



conclusion at the end. This is described as below( 
the survive may be 'yes' or 'no' at the end of 
splitting) 

(Note: The database URL here should be 
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/titani
c.db' when you use our applet online) 

 

However, we recommend you to have a look at a 
decision learning algorithm called PT2, which is an 
incremental method for finding multivariate splits 
for decision tree. (Paul Utgoff & Carla Brodley, 
1990) 

4. 2 Scenario 2: 

Another shortcoming is that ID3 relys much on the 
quality of training data sets. Managing noise of the 
training sets is of much importance when we need 
to apply decision tree learning algorithm to the real 
world. For an example, when there is noise in 
learning data sets, or when the number of training 
examples is too small to produce a representative 
sample of the true target function, ID3 can lead to 
inaccurate decision making. 

A large variety of extensions to the basic ID3 
algorithm has been developed in order to apply 
decision tree learning rules to real world scenario, 
such as post-pruning trees, handling real-valued 



attributes, dealing with missing attributes, using 
attribute selection standards other than information 
gain, etc. What we have done here is to implement 
ID3 and demonstrate different splitting methods, 
as well as extend ID3 to continuous-valued 
attributes and apply it to real-valued attribute. We 
did not cover the issues of pruning which is the 
task of the Decision Tree Groups 2. 

 

5 Database Format: The database format requirement 
that can be loaded by our project. 

5.1 Database format requirements  

We plan to have a simple database format, because the main 
task of this project is Decision Tree learning a lgorithm.  

Each database is actually a text file. The first line is the name of 
the database. The second line contains the attribute names 
immediately followed by their types: numerical or symbolic. A 
numerical attribute can be real or integer. A symbolic attribute 
denotes any discrete attribute. Its value can be symbols, 
numbers or both of them. Each line corresponds to one example 
and contains the values of the attributes. And During the test 
stage of our project, we plan to have little numbers of items. 
However, the database can be expanded dynamically as you 
wish.  

The required database format is addressed as below: 

  

tennis  

outlook symbolic temperature symbolic humidity symbolic windy symbolic 
decision symbolic  

sunny hot high false n  

sunny hot high true n 

overcast hot high false p 

rain mild high false p  

rain cool normal false p  

rain cool normal true n  



overcast cool normal true p  

sunny mild high false n  

sunny cool normal false p  

rain mild normal false p  

sunny mild normal true p  

overcast mild high true p  

overcast hot normal false p 

rain mild high true n 

  

  

5.2 Method of loading database 

In order to deal with dynamic loading, we use InputStream 
loading databases file which is actually various learning sets 
from URL connection.  

All we need to do is to input URL into textfield in the applet, and 
click 'LoadDB' button, we then load the corresponding learning 
sets in. In the mean time, we can view it on a table in our applet. 

Before loading Database ,our applet looks like: 

 



  

After Loading databases, you can view database table on the 
left side of splitpane. 

 

  

 

5.3  Database that we use 

We currently use several databases in this assignment project, 
one is 'tennis' database, the others are tb.db, titanic.db,iris.db, 
zoo.db. Each manifests different perspective of our project. 

1. tennis.db: display classic ID3, deal with symbolic attribute 
only. 

2. tb.db: extend ID3 to continuous-valued attributes. 
3. titanic.db: display the shortcoming of ID3 for its 

impoverished range of selection of splitting attributes. 
4. iris.db: display how our extension to pure numeric 

attributes. 
5. zoo.db: display our capabilities in handling real-valued 

target ouputs. 

After You input database URL 
('http://www.cse.unsw.edu.au/~cs9417ml/DT1/tennis.db') in our 
applet and press 'LoadDB', you can load different database data 
sets into applet. 



As for 'tennis' database, we have discussed a lot in the former 
part. Here we give a description about 'titanic-passenger' 
learning sets. The set looks like as below: 

Passenger Class Age Sex Survive 

p1 first adult male yes 

p2  first adult male yes 
:  : : : : 

p176 first adult female yes 

: : : : : 
p493 second adult male no 

: : : : : 
p2201 crew adult female no 

  

The result from ID3 is demonstrated as below: 

 

 

 

6 ID3 Applet Demo 

 



6.1  ID3 applet functionality 

The general functionalities of this applet are: 

1. Dynamic database (learning sets) loading: By inputing URL 
into 'Database URL' textfield and pushing 'LoadDB' button. 

2. Various splitting criteria:  

? Automatic split according to ID3 algorithm: After click the 
AutoSplit button, this will build a decision tree 
automatically according to ID3. 

? Manual split according to ID3: In this mode, you can 
select node using mouse and push 'ManualSplit' button to 
split the selected node according to ID3. This mode is 
actually a step-by-step visualization of automatic split. 

? Manual split (randomly choosing attribute): In this mode, 
we can click the node with mouse, select the intended 
split method and attribute, then push 'ManualSplit' button. 

3. 'ClearTree' button: When error occurs, just click this button to 
restart demo. 

4. Node information display: When you click tree node with 
mouse, the node name and the entropy of its subset will be 
displayed at 'Node information' textfield. 

5. Database (learning set) information display: In the left hand 
side of splitpane, there is a table for you to have a view of 
database information. 

6.General instruction displayed at the bottom of applet or your 
browser.  

6.2  ID3 applet demo steps 

1. Make sure that your browser support Java 2 (Javax.swing.*)--- at least 
netscape6, or else you can run 'appletviewer.exe'. A good news is we 
can use a browser called 'Konquerer' in UNSW cse labs, the only 
thing we need is a little bit patience because it is really slow in 
loading applet. Make sure to close 'security manager' option in 
browser configuration.:) 

2. When you can run appletviewer, make sure that 9417.html and all 
class file in the same directory and use command line: appletviewer 
9417.html 

3. Load database first: Input correct URL 
(http://www.cse.unsw.edu.au/~cs9417ml/DT1/tb.db ) of our training 
database in textfield named 'Database URL' and push 'LoadDB' button, 
then you will notice that you can view database and attribute 
information in applet. We have several databases available : 



'tennis.db', 'tb,db', 'titanic.db', 'iris.db', 'zoo.db'. Each displays  different 
perspective of our project. 

4. Automatic build decision tree: Select 'Automatic split(ID3)' from 
JComBobox 'Choose Split Methods', then click 'AutoSplit' button, the 
returned decision tree will be displayed at right scrollpane of splitpane. 

5. Manual build decision tree using ID3:  
o Before start manual split, click 'ClearTree' button to clear the 

decision tree built from the following step; 
o Select tree node with mouse; 
o Select split methods 'Manual split(ID3)'; 
o Click 'ManualSplit' button; 
o Select intended node, then click 'ManualSplit' button until you 

reach leaf node. 
6. Manual build decision tree with randomly selected attribute::  

o Before start manual split, click 'ClearTree' button to clear the 
decision tree built from the following step; 

o Select tree node with mouse; 
o Select split methods 'Manual split(ID3)'; 
o Choose attribute in JComBobox 'Choose attribute' for splitting; 
o Click 'ManualSplit' button; 
o Select intended node and the right attribute, then click 

'ManualSplit' button until you reach leaf node; 
o Whenever you select tree node with you mouse, you can view 

node information at 'Node information' textfield. 

 

  

6.3 Applet Demo 

ID3 Applet Demo (here is the hyperlink of the java applet 
simulation of decision tree ID3. However this link unavailable 
this moment, please contact me at weipengtiger@hotmail.com 
for the source codes)  
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