
An Implementation of ID3 --- Decision Tree
Learning Algorithm

Wei Peng, Juhua Chen and Haiping Zhou
Project of Comp 9417: Machine Learning

University of New South Wales, School of Computer Science & Engineering,
Sydney, NSW 2032, Australia
weipengtiger@hotmail.com

Abstract

Decision tree learning algorithm has been successfully used in expert
systems in capturing knowledge. The main task performed in these systems is
using inductive methods to the given values of attributes of an unknown object
to determine appropriate classification according to decision tree rules. We
examine the decision tree learning algorithm ID3 and implement this algorithm
using Java programming. We first implement basic ID3 in which we dealt with
the target function that has discrete output values. We also extend the domain
of ID3 to real-valued output, such as numeric data and discrete outcome
rather than simply Boolean value. The Java applet provided at last section
offers a simulation of decision-tree learning algorithm in various situations.
Some shortcomings are discussed in this project as well.

1 Introduction

1.1 What is Decision Tree?

What is decision tree: A decision tree is a tree in which each branch node
represents a choice between a number of alternatives, and each leaf node
represents a decision.

Decision tree are commonly used for gaining information for the purpose of
decision -making. Decision tree starts with a root node on which it is for users
to take actions. From this node, users split each node recursively according to
decision tree learning algorithm. The final result is a decision tree in which
each branch represents a possible scenario of decision and its outcome.

1.2 What is decision tree learning algorithm?

'Decision tree learning is a method for approximating discrete-valued target
functions, in which the learned function is represented by a decision tree.
Decision tree learning is one of the most widely used and practical methods
for inductive inference'. (Tom M. Mitchell,1997,p52)

Decision tree learning algorithm has been successfully used in expert
systems in capturing knowledge. The main task performed in these systems is
using inductive methods to the given values of attributes of an unknown object
to determine appropriate classification according to decision tree rules.

Decision trees classify instances by traverse from root node to leaf node. We
start from root node of decision tree, testing the attribute specified by this
node, then moving down the tree branch according to the attribute value in the
given set. This process is the repeated at the sub-tree level.

What is decision tree learning algorithm suited for:

1. Instance is represented as attribute-value pairs. For example, attribute
'Temperature' and its value 'hot', 'mild', 'cool'. We are also concerning to
extend attribute-value to continuous-valued data (numeric attribute value) in
our project.

2.The target function has discrete output values. It can easily deal with
instance which is assigned to a boolean decision, such as 'true' and 'false',
'p(positive)' and 'n(negative)'. Although it is possible to extend target to real-
valued outputs, we will cover the issue in the later part of this report.

3.The training data may contain errors. This can be dealt with pruning
techniques that we will not cover here.

The 3 widely used decision tree learning algorithms are: ID3, ASSISTANT
and C4.5. We will cover ID3 in this report.

1.3 Why is Decision Tree Learning an attractive Inductive Learning
method

'Purely inductive learning methods formulate general
hypotheses by finding empirical regularities over the training
examples.'

(Tom M. Mitchell,1997,p334)

For inductive learning, decision tree learning is attractive for 3
reasons:

1. Decision tree is a good generalization for unobserved
instance, only if the instances are described in terms of
features that are correlated with the target concept.

2. The methods are efficient in computation that is
proportional to the number of observed training instances.

3. The resulting decision tree provides a representation of
the concept that appeals to human because it renders the
classification process self-evident.

(Paul Utgoff & Carla Brodley, 1990)

2 Decision Tree Learning Algorithm — ID3 Basic

2.1. ID3 Basic

ID3 is a simple decision tree learning algorithm developed by
Ross Quinlan (1983). The basic idea of ID3 algorithm is to
construct the decision tree by employing a top-down, greedy
search through the given sets to test each attribute at every tree
node. In order to select the attribute that is most useful for
classifying a given sets, we introduce a metric---information
gain.

To find an optimal way to classify a learning set, what we need
to do is to minimize the questions asked (i.e. minimizing the
depth of the tree). Thus, we need some function which can
measure which questions provide the most balanced splitting.
The information gain metric is such a function.

2.2 Entropy --- measuring homogeneity of a learning set

(Tom M. Mitchell,1997,p55)

In order to define information gain precisely, we
need to discuss entropy first.

First, lets assume, without loss of generality, that
the resulting decision tree classifies instances into
two categories, we'll call them P(positive)and
N(negative).

Given a set S, containing these positive and
negative targets, the entropy of S related to this
boolean classification is:

Entropy(S)=

- P(positive)log2P(positive) -
P(negative)log2P(negative)

P(positive): proportion of positive examples in
S

P(negative): proportion of negative examples
in S

For example, if S is (0.5+, 0.5-) then Entropy(S) is
1, if S is (0.67+, 0.33-) then Entropy(S) is 0.92, if P
is (1+, 0-) then Entropy(S) is 0. Note that the more
uniform is the probability distribution, the greater is
its information.

You may notice that entropy is a measure of the
impurity in a collection of training sets. But how it is
related to the optimisation of our decision making
in classifying the instances. What you will see at
the following will answer this question.

2.3 Information Gain--- measuring the expected reduction in
Entropy

(Tom M. Mitchell,1997,p57)

As we mentioned before, to minimize the decision
tree depth, when we traverse the tree path, we
need to select the optimal attribute for splitting the
tree node, which we can easily imply that the
attribute with the most entropy reduction is the
best choice.

We define information gain as the expected
reduction of entropy related to specified attribute
when splitting a decision tree node.

The information gain, Gain(S,A) of an attribute A,

Gain(S,A)= Entropy(S) -

Sum for v from 1 to n of (|Sv|/|S|) * Entropy(Sv)

We can use this notion of gain to rank attributes
and to build decision trees where at each node is
located the attribute with greatest gain among the
attributes not yet considered in the path from the
root.

The intention of this ordering is:

1. To create small decision trees so
that records can be identified after
only a few decision tree splitting.

2. To match a hoped for minimalism
of the process of decision making

 3 What we have done here

3.1 How we implement ID3 Algorithm here:

ID3 (Learning Sets S, Attributes Sets A, Attributesvalues V)
Return Decision Tree.

Begin

Load learning sets first, create decision tree root
node 'rootNode', add learning set S into root node
as its subset.

For rootNode, we compute
Entropy(rootNode.subset) first

If Entropy(rootNode.subset)==0, then
rootNode.subset consists of records
all with the same value for the
categorical attribute, return a leaf
node with decision
attribute:attribute value;

If Entropy(rootNode.subset)!=0, then
compute information gain for each
attribute left(have not been used in
splitting), find attribute A with

Maximum(Gain(S,A)). Create child
nodes of this rootNode and add to
rootNode in the decision tree.

For each child of the rootNode, apply
ID3(S,A,V) recursively until reach
node that has entropy=0 or reach
leaf node.

End ID3.

3.2 An Example here:

To describe the operation of ID3, we use a classic 'PlayTennis'
example.

The symbolic attribute description:

Attribute Possible Values

Outlook sunny, overcast, rain

Temperature hot, mild, cool
Humidity high, normal
Windy true, false

Decision n(negative), p(positive)

The Learning set for play tennis example:

Outlook Temperature Humidity Windy Decision

sunny hot high false n

sunny hot high true n
overcast hot high false p

rain mild high false p
rain cool normal false p
rain cool normal true n

overcast cool normal true p
sunny mild high false n

sunny cool normal false p
rain mild normal false p
sunny mild normal true p

overcast mild high true p
overcast hot normal false p

rain mild high true n

What we need to do with ID3:

1. Create rootNode, containing the whole learning
set as its subset, then computer
Entropy(rootNode.subset) = -(9/14)log2(9/14) -
(5/14)log2(5/14)=0.940

2. Compute information gain for each attribute:

Gain(S,Windy) = Entropy(S)-(8/14)Entropy(S false) -
(6/14)Entropy(S true) =0.048

Gain(S,Humidity) =0.151

Gain(S,Temperature)=0.029

Gain(S, Outlook) = 0.246

3. Select attribute with the maximum information
gain, which is 'outlook' for splitting. We
have:(Note: the database URL here should be
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/tenni
s.db' when you use our applet online.)

4.Apply ID3 to each child node of this root, until
leaf node or node that has entropy=0 are reached.
We have decision tree described as below:

3.3 Dealing with continuous-valued attributes:

Initial definition of ID3 is restricted in dealing with
discrete sets of values. It handles symbolic
attribute effectively. However, we have to extend it
sphere to continuous-valued attributes (numeric
attribute) to fit the real world scenario. The
algorithm here we use is described at Tom M.
Mitchell's 'Machine Learning'. (Tom M.
Mitchell,1997,p72-73)

What we have done is to define new discrete
valued attributes that partition the continuous-
valued attribute into symbolic attribute again.

As an example, we included another database file
(tb.db) in which we added numeric attributes. The
format is as below:

Outlook Temperature Humidity Windy Decision

sunny hot 0.9 false n

sunny hot 0.87 true n
overcast hot 0.93 false p

rain mild 0.89 false p
rain cool 0.80 false p
rain cool 0.59 true n

overcast cool 0.77 true p
sunny mild 0.91 false n

sunny cool 0.68 false p
rain mild 0.84 false p
sunny mild 0.72 true p

overcast mild 0.49 true p
overcast hot 0.74 false p

rain mild 0.86 true n

For humidity attribute, we need to create a new
boolean value that is true when humidity<=c and
false otherwise. The only thing left is to compute
the best threshold c.

In our example, the most information gain is
attribute 'outlook', (see 5.2). In the subset rooted at
'outlook:sunny', we would like to compute the
information gain for 'Humidity' which is a numeric
attribute. To do this, first, we sort humidity as
below:

Humidity 0.68 0.72 0.87 0.9 0.91
Playtennis p p n n n

We would like to pick a threshold that produces the
greatest information gain. By sorting the numeric
attribute values, then identifying adjacent
examples that differ in their target classification,
we can generate a set of candidate threshold.
Then we compute information gain for each
candidate and find the best one for splitting. The
candidate thresholds for this example is fortunate
1:

Humidity>(0.72+0.87)/2 that is Humidity>0.795,
with the information gain G(S,Humidity)=0.97. If we

have more than 1 candidate here, we just need to
find the best information gain one.

After we include continuous-valued attribute in, the
databases and the result of decision tree look like
as below:

(Note: the database URL here should be
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/tb.db
' when you use our applet online.)

In the end, we also plan to include complex
databases such as, 'iris.db', 'german.db', 'zoo.db',
etc. These databases can be found in our DT1
directory.

3.4 Extending ID3 to real-valued data:

Just as we mentioned before, ID3 is quite efficient
in dealing with the target function that has discrete
output values. It can easily deal with instance
which is assigned to a boolean decision, such as
'true' and 'false', 'p (positive)' and 'n (negative)'. It
is possible to extend target to real-valued outputs.

When we compute information gain in our
'Function.java', what we concern is not just the
boolean decision gained from decision tree
inductive learning, we try to extend target function
to real-valued outputs. Such as in our example,

'zoo.db', the final decision is not simple boolean
value but an array of discrete values. You will see
the result as below:

(Note:The database URL here should be
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/zoo.
db' rather than the one displayed as below when
you use our applet online)

4 Shortcoming of ID3

4. 1 Scenario 1:

'A significant shortcoming of ID3 is that the space
of legal splits at a node is impoverished. A split is a
partition of the instance space that results from
placing a test at a decision tree node. ID3 and its
descendants only allow testing a single attribute
and braching on the outcome of that test' (Paul
Utgoff & Carla Brodley, 1990)

During our implementation of ID3, we found that
sometimes, we can not gain a result using split
creteria provided by ID3. Such as in dealing with
'titanic.db', you may find that we can ot gain a

conclusion at the end. This is described as below(
the survive may be 'yes' or 'no' at the end of
splitting)

(Note: The database URL here should be
'http://www.cse.unsw.edu.au/~cs9417ml/DT1/titani
c.db' when you use our applet online)

However, we recommend you to have a look at a
decision learning algorithm called PT2, which is an
incremental method for finding multivariate splits
for decision tree. (Paul Utgoff & Carla Brodley,
1990)

4. 2 Scenario 2:

Another shortcoming is that ID3 relys much on the
quality of training data sets. Managing noise of the
training sets is of much importance when we need
to apply decision tree learning algorithm to the real
world. For an example, when there is noise in
learning data sets, or when the number of training
examples is too small to produce a representative
sample of the true target function, ID3 can lead to
inaccurate decision making.

A large variety of extensions to the basic ID3
algorithm has been developed in order to apply
decision tree learning rules to real world scenario,
such as post-pruning trees, handling real-valued

attributes, dealing with missing attributes, using
attribute selection standards other than information
gain, etc. What we have done here is to implement
ID3 and demonstrate different splitting methods,
as well as extend ID3 to continuous-valued
attributes and apply it to real-valued attribute. We
did not cover the issues of pruning which is the
task of the Decision Tree Groups 2.

5 Database Format: The database format requirement
that can be loaded by our project.

5.1 Database format requirements

We plan to have a simple database format, because the main
task of this project is Decision Tree learning a lgorithm.

Each database is actually a text file. The first line is the name of
the database. The second line contains the attribute names
immediately followed by their types: numerical or symbolic. A
numerical attribute can be real or integer. A symbolic attribute
denotes any discrete attribute. Its value can be symbols,
numbers or both of them. Each line corresponds to one example
and contains the values of the attributes. And During the test
stage of our project, we plan to have little numbers of items.
However, the database can be expanded dynamically as you
wish.

The required database format is addressed as below:

tennis

outlook symbolic temperature symbolic humidity symbolic windy symbolic
decision symbolic

sunny hot high false n

sunny hot high true n

overcast hot high false p

rain mild high false p

rain cool normal false p

rain cool normal true n

overcast cool normal true p

sunny mild high false n

sunny cool normal false p

rain mild normal false p

sunny mild normal true p

overcast mild high true p

overcast hot normal false p

rain mild high true n

5.2 Method of loading database

In order to deal with dynamic loading, we use InputStream
loading databases file which is actually various learning sets
from URL connection.

All we need to do is to input URL into textfield in the applet, and
click 'LoadDB' button, we then load the corresponding learning
sets in. In the mean time, we can view it on a table in our applet.

Before loading Database ,our applet looks like:

After Loading databases, you can view database table on the
left side of splitpane.

5.3 Database that we use

We currently use several databases in this assignment project,
one is 'tennis' database, the others are tb.db, titanic.db,iris.db,
zoo.db. Each manifests different perspective of our project.

1. tennis.db: display classic ID3, deal with symbolic attribute
only.

2. tb.db: extend ID3 to continuous-valued attributes.
3. titanic.db: display the shortcoming of ID3 for its

impoverished range of selection of splitting attributes.
4. iris.db: display how our extension to pure numeric

attributes.
5. zoo.db: display our capabilities in handling real-valued

target ouputs.

After You input database URL
('http://www.cse.unsw.edu.au/~cs9417ml/DT1/tennis.db') in our
applet and press 'LoadDB', you can load different database data
sets into applet.

As for 'tennis' database, we have discussed a lot in the former
part. Here we give a description about 'titanic-passenger'
learning sets. The set looks like as below:

Passenger Class Age Sex Survive

p1 first adult male yes

p2 first adult male yes
: : : : :

p176 first adult female yes

: : : : :
p493 second adult male no

: : : : :
p2201 crew adult female no

The result from ID3 is demonstrated as below:

6 ID3 Applet Demo

6.1 ID3 applet functionality

The general functionalities of this applet are:

1. Dynamic database (learning sets) loading: By inputing URL
into 'Database URL' textfield and pushing 'LoadDB' button.

2. Various splitting criteria:

? Automatic split according to ID3 algorithm: After click the
AutoSplit button, this will build a decision tree
automatically according to ID3.

? Manual split according to ID3: In this mode, you can
select node using mouse and push 'ManualSplit' button to
split the selected node according to ID3. This mode is
actually a step-by-step visualization of automatic split.

? Manual split (randomly choosing attribute): In this mode,
we can click the node with mouse, select the intended
split method and attribute, then push 'ManualSplit' button.

3. 'ClearTree' button: When error occurs, just click this button to
restart demo.

4. Node information display: When you click tree node with
mouse, the node name and the entropy of its subset will be
displayed at 'Node information' textfield.

5. Database (learning set) information display: In the left hand
side of splitpane, there is a table for you to have a view of
database information.

6.General instruction displayed at the bottom of applet or your
browser.

6.2 ID3 applet demo steps

1. Make sure that your browser support Java 2 (Javax.swing.*)--- at least
netscape6, or else you can run 'appletviewer.exe'. A good news is we
can use a browser called 'Konquerer' in UNSW cse labs, the only
thing we need is a little bit patience because it is really slow in
loading applet. Make sure to close 'security manager' option in
browser configuration.:)

2. When you can run appletviewer, make sure that 9417.html and all
class file in the same directory and use command line: appletviewer
9417.html

3. Load database first: Input correct URL
(http://www.cse.unsw.edu.au/~cs9417ml/DT1/tb.db) of our training
database in textfield named 'Database URL' and push 'LoadDB' button,
then you will notice that you can view database and attribute
information in applet. We have several databases available :

'tennis.db', 'tb,db', 'titanic.db', 'iris.db', 'zoo.db'. Each displays different
perspective of our project.

4. Automatic build decision tree: Select 'Automatic split(ID3)' from
JComBobox 'Choose Split Methods', then click 'AutoSplit' button, the
returned decision tree will be displayed at right scrollpane of splitpane.

5. Manual build decision tree using ID3:
o Before start manual split, click 'ClearTree' button to clear the

decision tree built from the following step;
o Select tree node with mouse;
o Select split methods 'Manual split(ID3)';
o Click 'ManualSplit' button;
o Select intended node, then click 'ManualSplit' button until you

reach leaf node.
6. Manual build decision tree with randomly selected attribute::

o Before start manual split, click 'ClearTree' button to clear the
decision tree built from the following step;

o Select tree node with mouse;
o Select split methods 'Manual split(ID3)';
o Choose attribute in JComBobox 'Choose attribute' for splitting;
o Click 'ManualSplit' button;
o Select intended node and the right attribute, then click

'ManualSplit' button until you reach leaf node;
o Whenever you select tree node with you mouse, you can view

node information at 'Node information' textfield.

6.3 Applet Demo

ID3 Applet Demo (here is the hyperlink of the java applet
simulation of decision tree ID3. However this link unavailable
this moment, please contact me at weipengtiger@hotmail.com
for the source codes)

Acknowledgements:

We wish to thank for Professor Claude Sammut and Associate professor
Achim Hoffmann at UNSW for their guidance and support for our project in the
course of Machine Learning. We also appreciate the other project groups that

involved in providing helpful evaluations and suggestions. Without our friend
Tony Li’s help, this report would have been still in HTML and Word files. We
would thank him in assisting me to convert this report to PDF version.

Reference

1. Tom M. Mitchell, (1997). Machine Learning, Singapore, McGraw-
Hill.

2. Paul E. Utgoff and Carla E. Brodley, (1990). 'An Incremental Method
for Finding Multivariate Splits for Decision Trees', Machine Learning:
Proceedings of the Seventh International Conference, (pp.58). Palo Alto,
CA: Morgan Kaufmann

