
Machine Learning and ID tree

What is machine learning (ML)?
Tom Mitchell (prof. in Carnegie Mellon University) defined

Definition:
A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks T, as measured
by P, improves with experience E.

 Traditional Programming

 Machine Learning

Computer
Data

Program
Output

Computer
Data

Output
Program

Styles of machine learning
Human have many learning styles
How about machine?

Supervised Learning
• machine performs function (e.g., classification) after training on a

data set where inputs and desired outputs are provided
 like decision trees
Unsupervised Learning
• Learning useful structure without labeled classes, optimization

criterion, feedback signal, or any other information beyond the
raw data

 like clustering
Semi-supervised Learning
 ??? Getting important in ML
 Use unlabeled data to augment a small labeled sample
 to improve learning?

Decision Tree Learning

• Learning Decision Trees
– Decision tree induction is a simple but powerful learning

paradigm. In this method a set of training examples is broken
down into smaller and smaller subsets while at the same time an
associated decision tree get incrementally developed. At the end
of the learning process, a decision tree covering the training set
is returned.

– The decision tree can be thought of as a set sentences (in
Disjunctive Normal Form) written propositional logic.

– Some characteristics of problems that are well suited to Decision
Tree Learning are:

• Attribute-value paired elements
• Discrete target function
• Disjunctive descriptions (of target function)
• Works well with missing or erroneous training data

An example:

Building a Decision Tree

1. First test all attributes and select the on that would
function as the best root;

2. Break-up the training set into subsets based on the
branches of the root node;

3. Test the remaining attributes to see which ones fit
best underneath the branches of the root node;

4. Continue this process for all other branches until
a. all examples of a subset are of one type
b. there are no examples left (return majority

classification of the parent)
c. there are no more attributes left (default value

should be majority classification)

Determining which attribute is best (Entropy & Gain)

• Entropy (E) is the minimum number of bits needed in

order to classify an arbitrary example as yes or no
• E(S) = Σc

i=1 –pi log2 pi ,
– Where S is a set of training examples,
– c is the number of classes, and
– pi is the proportion of the training set that is of class i

• For our entropy equation 0 log2 0 = 0
• The information gain G(S,A) where A is an attribute
• G(S,A) ≡ E(S) - Σv in Values(A) (|Sv| / |S|) * E(Sv)

ICS320 9

Entropy

 S is a sample of training examples
 p+ is the proportion of positive examples
 p- is the proportion of negative examples
 Entropy measures the impurity of S

Entropy(S) = -p+ log2 p+ - p- log2 p-

Decision Trees

example data sets
classifiers

and
prediction models apply information theory

By Shanon and Weaver (1949)

The unit of information
is a bit, and the
amount of information
in a single binary
answer is log2P(v),
where P(v) is the
probability of event v
occurring.

Information needed for a correct answer,

 E(S)= I(p/(p+n), n/(p+n)) = - (p/(p+n) log2 p/(p+n)) - n/(p+n)log2 n/(p+n))

Information contained in the remained sub-trees,

 Remainder(A) = Σ(pi+ ni) /(p+n) I(pi/(pi+ ni), ni/(pi+ ni))

Gain(A) = I(p/(p+n), n/(p+n)) - Remainder(A)

disorder

By calculating
information entropy

• E(S) = Σc
i=1 –pi log2 pi ,

By knowing Outlook, how much information have I gained?

Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) =
.940 - .694 = .246

12

Information Gain
• The information gain of a feature F is the expected reduction in

entropy resulting from splitting on this feature.

 where Sv is the subset of S having value v for feature F.
• Entropy of each resulting subset weighted by its relative size.
• Example:

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

S= Result (bounces?)
F = Size
|S|=8
V=1: Small
 2: Large
 3: Medium
|S1| = 4
|S2| = 1
|S3| = 3

13

E(S)= I(p/(p+n), n/(p+n)) = - (p/(p+n) log2 p/(p+n)) - n/(p+n)log2 n/(p+n))

 |S|=8

E(S) = - 3/8*log2(3/8) – 5/8*log2(5/8) = 0.954434

Gain(S, Size) =?
Gain(S, Color) =?
Gain(S, Weight) =?
Gain(S, Rubber) =?

Four possible splitting:

Qs:
Which is better?
Which is the best?

How about color_Disorder?
 weight_Disorder?
 rubber_Disorder?

Color: 0.69
Weight: 0.94
Rubber: 0.61

(0.954434)

Color_Disorder = 0.69
Weight_Disorder = 0.94
Rubber_Disorder = 0.61

Disorder

(1) Work in Class: Please write down their formulae.

For the case of Size = small,
continue to split this note

How about other two cases?
Split or not? Why?
 - medium?
 - large?

Finish splitting?
Why?

(2) Work in Class: Please write down
their formulae.

Home work
Write down all formulae of creating
decision tree (why selecting
Outlook as root node, and Humidity
and Wind as the children nodes in)
based on information gain (or
remaining disorder)

• E(S) = Σc
i=1 –pi log2 pi ,

By knowing Outlook, how much information have I gained?

Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) =
.940 - .694 = .246

http://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm

conditional entropy for rain

http://www.cs.csi.cuny.edu/~imberman/ai/Entropy and Information Gain.htm

Implementation of a Decision Tree
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
 double computeInfo(int p, int n) {
 double total = p + n ;
 double pos = p / total ;
 double neg = n / total;
 double temp;
 if ((p ==0) || (n == 0)) {
 temp = 0.0 ;
 } else {
 temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))
 - (neg * Math.log(neg)/Math.log(2)) ;
 }
 return temp ;
 }

double computeRemainder(Variable variable,
 Vector examples)
 {
 int positive[] = new int[variable.labels.size()];
 int negative[] = new int[variable.labels.size()];
 int index = variable.column;
 int classIndex = classVar.column;
 double sum = 0 ;
 double numValues = variable.labels.size();
 double numRecs = examples.size() ;
 for(int i=0 ; i < numValues ; i++) {
 String value = variable.getLabel(i);
 Enumeration enum = examples.elements();
 while (enum.hasMoreElements()) {
 String record[] = (String[])enum.nextElement();
 // get next record
 if (record[index].equals(value)) {
 if (record[classIndex].equals("yes")) {
 positive[i]++;
 } else {
 negative[i]++;
 }
 }
 } /* endwhile */

 double weight = (positive[i]+negative[i]) / numRecs;
 double myrem = weight * computeInfo(positive[i],
 negative[i]);
 sum = sum + myrem ;
 } /* endfor */
 return sum ;
}

Implementation of a Decision Tree
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
 double computeInfo(int p, int n) {
 double total = p + n ;
 double pos = p / total ;
 double neg = n / total;
 double temp;
 if ((p ==0) || (n == 0)) {
 temp = 0.0 ;
 } else {
 temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))
 - (neg * Math.log(neg)/Math.log(2)) ;
 }
 return temp ;
 }

double computeRemainder(Variable variable,
 Vector examples)
 {
 int positive[] = new int[variable.labels.size()];
 int negative[] = new int[variable.labels.size()];
 int index = variable.column;
 int classIndex = classVar.column;
 double sum = 0 ;
 double numValues = variable.labels.size();
 double numRecs = examples.size() ;
 for(int i=0 ; i < numValues ; i++) {
 String value = variable.getLabel(i);
 Enumeration enum = examples.elements();
 while (enum.hasMoreElements()) {
 String record[] = (String[])enum.nextElement();
 // get next record
 if (record[index].equals(value)) {
 if (record[classIndex].equals("yes")) {
 positive[i]++;
 } else {
 negative[i]++;
 }
 }
 } /* endwhile */

 double weight = (positive[i]+negative[i]) / numRecs;
 double myrem = weight * computeInfo(positive[i],
 negative[i]);
 sum = sum + myrem ;
 } /* endfor */
 return sum ;
}

Implementation of a Decision Tree
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
 double computeInfo(int p, int n) {
 double total = p + n ;
 double pos = p / total ;
 double neg = n / total;
 double temp;
 if ((p ==0) || (n == 0)) {
 temp = 0.0 ;
 } else {
 temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))
 - (neg * Math.log(neg)/Math.log(2)) ;
 }
 return temp ;
 }

double computeRemainder(Variable variable,
 Vector examples)
 {
 int positive[] = new int[variable.labels.size()];
 int negative[] = new int[variable.labels.size()];
 int index = variable.column;
 int classIndex = classVar.column;
 double sum = 0 ;
 double numValues = variable.labels.size();
 double numRecs = examples.size() ;
 for(int i=0 ; i < numValues ; i++) {
 String value = variable.getLabel(i);
 Enumeration enum = examples.elements();
 while (enum.hasMoreElements()) {
 String record[] = (String[])enum.nextElement();
 // get next record
 if (record[index].equals(value)) {
 if (record[classIndex].equals("yes")) {
 positive[i]++;
 } else {
 negative[i]++;
 }
 }
 } /* endwhile */

 double weight = (positive[i]+negative[i]) / numRecs;
 double myrem = weight * computeInfo(positive[i],
 negative[i]);
 sum = sum + myrem ;
 } /* endfor */
 return sum ;
}

Implementation of a Decision Tree
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
 double computeInfo(int p, int n) {
 double total = p + n ;
 double pos = p / total ;
 double neg = n / total;
 double temp;
 if ((p ==0) || (n == 0)) {
 temp = 0.0 ;
 } else {
 temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))
 - (neg * Math.log(neg)/Math.log(2)) ;
 }
 return temp ;
 }

double computeRemainder(Variable variable,
 Vector examples)
 {
 int positive[] = new int[variable.labels.size()];
 int negative[] = new int[variable.labels.size()];
 int index = variable.column;
 int classIndex = classVar.column;
 double sum = 0 ;
 double numValues = variable.labels.size();
 double numRecs = examples.size() ;
 for(int i=0 ; i < numValues ; i++) {
 String value = variable.getLabel(i);
 Enumeration enum = examples.elements();
 while (enum.hasMoreElements()) {
 String record[] = (String[])enum.nextElement();
 // get next record
 if (record[index].equals(value)) {
 if (record[classIndex].equals("yes")) {
 positive[i]++;
 } else {
 negative[i]++;
 }
 }
 } /* endwhile */

 double weight = (positive[i]+negative[i]) / numRecs;
 double myrem = weight * computeInfo(positive[i],
 negative[i]);
 sum = sum + myrem ;
 } /* endfor */
 return sum ;
}

Implementation of a Decision Tree
// return the variable with most gain
 Variable chooseVariable(Hashtable variables, Vector examples)
 {
 Enumeration enum = variables.elements() ;
 double gain = 0.0, bestGain = 0.0 ;
 Variable best = null ;
 int counts[] ;
 counts = getCounts(examples) ;
 int pos = counts[0] ;
 int neg = counts[1] ;
 double info = computeInfo(pos, neg);

 while(enum.hasMoreElements()) {
 Variable tempVar = (Variable)enum.nextElement() ;
 gain = info - computeRemainder(tempVar, examples);

 if (gain > bestGain) {
 bestGain = gain ;
 best = tempVar;
 }

 }
 return best; //
 }

Implementation of a Decision Tree
// return the variable with most gain
 Variable chooseVariable(Hashtable variables, Vector examples)
 {
 Enumeration enum = variables.elements() ;
 double gain = 0.0, bestGain = 0.0 ;
 Variable best = null ;
 int counts[] ;
 counts = getCounts(examples) ;
 int pos = counts[0] ;
 int neg = counts[1] ;
 double info = computeInfo(pos, neg);

 while(enum.hasMoreElements()) {
 Variable tempVar = (Variable)enum.nextElement() ;
 gain = info - computeRemainder(tempVar, examples);

 if (gain > bestGain) {
 bestGain = gain ;
 best = tempVar;
 }

 }
 return best; //
 }

Which has the best gain?

Gain(S, Size) =?
Gain(S, Color) =?
Gain(S, Weight) =?
Gain(S, Rubber) =?

Demo

• A decision tree. (Run LearnApplet.java in Eclipse)

 C:Huang/Java2012/AI-2/(bin,src)/decisionTree/……
 L8-src¥LearnApplet1.zip

• Example data
 L8-src¥LearnApplet1¥resttree.dat.txt
 resttree.dat
 resttree.dfn

Starting DecisionTree

Info = 1.0

reservation gain = 0.020720839623907805

alternate gain = 0.0

FriSat gain = 0.020720839623907805

hungry gain = 0.19570962879973086

price gain = 0.19570962879973075

patrons gain = 0.5408520829727552

waitEstimate gain = 0.20751874963942196

bar gain = 0.0

rtype gain = 1.1102230246251565E-16

raining gain = 0.0

Choosing best variable: patrons

 Subset - there are 4 records with patrons = some

 Subset - there are 6 records with patrons = full

Info = 0.9182958340544896

reservation gain = 0.2516291673878229

alternate gain = 0.10917033867559889

FriSat gain = 0.10917033867559889

hungry gain = 0.2516291673878229

price gain = 0.2516291673878229

patrons gain = 0.0

waitEstimate gain = 0.2516291673878229

bar gain = 0.0

rtype gain = 0.2516291673878229

raining gain = 0.10917033867559889

Choosing best variable: reservation

 Subset - there are 2 records with reservation = yes

 Subset - there are 4 records with reservation = no

Info = 1.0

reservation gain = 0.0

alternate gain = 0.31127812445913283

FriSat gain = 0.31127812445913283

hungry gain = 0.31127812445913283

price gain = 0.0

patrons gain = 0.0

waitEstimate gain = 0.5

bar gain = 0.0

rtype gain = 0.0

raining gain = 0.31127812445913283

Choosing best variable: waitEstimate

 Subset - there are 0 records with waitEstimate = 0-10

 Subset - there are 2 records with waitEstimate = 30-60

Results:

Info = 1.0

reservation gain = 0.0

alternate gain = 0.0

FriSat gain = 1.0

hungry gain = 0.0

price gain = 0.0

patrons gain = 0.0

waitEstimate gain = 0.0

bar gain = 1.0

rtype gain = 1.0

raining gain = 0.0

Choosing best variable: FriSat

 Subset - there are 1 records with FriSat = no

 Subset - there are 1 records with FriSat = yes

 Subset - there are 1 records with waitEstimate = 10-30

 Subset - there are 1 records with waitEstimate = >60

 Subset - there are 2 records with patrons = none

DecisionTree -- classVar = ClassField

Interior node - patrons

Link - patrons=some

Leaf node - yes

Link - patrons=full

Interior node - reservation

Link - reservation=yes

Leaf node - no

Link - reservation=no

Interior node - waitEstimate

Link - waitEstimate=0-10

Leaf node - yes

Link - waitEstimate=30-60

Interior node - FriSat

Link - FriSat=no

Leaf node - no

Link - FriSat=yes

Leaf node - yes

Link - waitEstimate=10-30

Leaf node - yes

Link - waitEstimate=>60

Leaf node - no

Link - patrons=none

Leaf node - no

Stopping DecisionTree - success!

Output:

Info = 1.0

waitEstimate gain = 0.0

raining gain = 0.0

hungry gain = 0.0

price gain = 1.0

FriSat gain = 0.0

bar gain = 1.0

patrons gain = 0.0

alternate gain = 0.0

rtype gain = 1.0

reservation gain = 1.0

Choosing best variable: price

 Subset - there are 1 records with price = $$$

 Subset - there are 1 records with price = $

 Subset - there are 0 records with price = $$

 Subset - there are 2 records with waitEstimate = >60

 Subset - there are 2 records with patrons = none

DecisionTree -- classVar = ClassField

Interior node - patrons

Link - patrons=some

Leaf node - yes

Link - patrons=full

Interior node - waitEstimate

Link - waitEstimate=0-10

Leaf node - yes

Link - waitEstimate=30-60

Interior node - FriSat

Link - FriSat=no

Leaf node - no

Link - FriSat=yes

Leaf node - yes

Link - waitEstimate=10-30

Interior node - price

Link - price=$$$

Leaf node - no

Link - price=$

Leaf node - yes

Link - price=$$

Leaf node - yes

Link - waitEstimate=>60

Leaf node - no

Link - patrons=none

Leaf node - no

Stopping DecisionTree - success!

Draw a decision tree!

(3) Work in class
Please draw a decision tree for p28 ad p29 the
running results of the decision tree!

decision tree from the running results

Patrons

yes no reservation

FriSat

no

some none full

yes

yes

waitEstimate

no

0-10 30-60

yes

10-30

no

>60

yes

yes

no

no

alternate bar FriSat hungry patrons price raining reservation rtype waitEstimate ClassField

yes no no yes some $$$ no yes French 0-10 yes
yes no no yes full $ no no Thai 30-60 no
no yes no no some $ no no Burger 0-10 yes
yes no yes yes full $ no no Thai 10-30 yes
yes no yes no full $$$ no yes French >60 no
no yes no yes some $$ yes yes Italian 0-10 yes
no yes no no none $ yes no Burger 0-10 no
no no no yes some $$ yes yes Thai 0-10 yes
no yes yes no full $ yes no Burger >60 no
yes yes yes yes full $$$ no yes Italian 10-30 no
no no no no none $ no no Thai 0-10 no
yes yes yes yes full $ no no Burger 30-60 yes

Patrons reservation ClassField

 full no no
 no yes
 yes no
 no no
 yes no
 no yes

Reservation waitEstimate ClassField

 no 30-60 no
 10-30 yes
 >60 no
 30-60 yes

waitEstimate FriSat ClassField

 30-60 no no
 yes yes

Whole dataset

Subset of dataset

Calculate the following conditional entropy:

Remainder(reservation/patron) =?

Remainder(waitEstimate/reservation) = ?

Remainder(FriSat/waitEstimate)= ?

Calculate

Remainder(reservation/patron) =
 2/6*0 + 4/6*(-2/4*log2 (2/4) -2/4*log2 (2/4))

Remainder(waitEstimate/reservation) = ?
 1/4*0 + 1/4*0 + 2/4*(-1/2*log2(1/2) -1/2*log2(1/2)) = 0.5

Remainder(FriSat/waitEstimate)= ?
 1/2*0 +1/2*0 = 0

(3). Work in class
Please draw a decision tree for p12 ad p13 the
running results of the decision tree!

Patrons

yes no reservation

FriSat

no

some none full

yes

yes

waitEstimate

no

0-10 30-60

yes

10-30

no

>60

yes

yes

no

no

ID Trees to Rules
Once an ID tree is constructed successfully, it can be used to
generate a rule-set, which will serve to perform the necessary
classifications of the ID tree. This is done by creating a single rule for
each path from the root to a leaf in the ID tree.

R1: if (size = large)
 then (ball does bounce)
R2: if (size = medium)
 then (ball does not bounce)
R3: if (size = small)
 (rubber = no)
 then (ball does not bounce)
R4: if (size = small)
 (rubber = yes)
 then (ball does bounce)

Refined Rules

R1: if (size = large)
 then (ball does bounce)
R2: if (size = medium)
 then (ball does not bounce)
R3: if (rubber = no)
 then (ball does not bounce)
R4: if (size = small)
 (rubber = yes)
 then (ball does bounce)

R1: if (size = large)
 then (ball does bounce)
R2: if (size = medium)
 then (ball does not bounce)
R3: if (size = small)
 (rubber = no)
 then (ball does not bounce)
R4: if (size = small)
 (rubber = yes)
 then (ball does bounce)

Rules are used in rule-based
(forward chaining or backward
chaining) systems.

R3: if (size = small)
 (rubber = no)
 then (ball does not bounce)

 Eliminating unnecessary rule conditions

Looking at the probability with
 event A = (size=small) and event B = (ball does not bounce)

Calculate:
 P(B|A) = (3 non rubber balls do not bounce / 8 total) = 0.375
 P(B) = (3 non rubber balls do not bounce / 8 total) = 0.375

 P(B|A) = P(B) therefore B is independent of A

What does
this mean?

A and B no relation, no dependency

R3: if (size = small)
 (rubber = no)
 then (ball does not bounce)

R3: if (size = small)
 (rubber = no)
 then (ball does not bounce)

 Eliminating unnecessary rule conditions

Looking at the probability with
 event A = (rubber=no) and event B = (ball does not bounce)

Calculate:
 P(B|A) = (3 balls do not bounce / 8 total) = 3/8
 P(B) = (5 balls do not bounce / 8 total) = 5/8

 P(B|A) ≠ P(B) therefore A and B are not independent

What does
this mean?

No change on R3

 R3: if (rubber = no)
 then (ball does not bounce)

Home Work

Read the following site:

http://ai-depot.com/Tutorial/RuleBased.html

http://ai-depot.com/Tutorial/RuleBased.html
http://ai-depot.com/Tutorial/RuleBased.html
http://ai-depot.com/Tutorial/RuleBased.html

	Machine Learning and ID tree
	What is machine learning (ML)?
	スライド番号 3
	Styles of machine learning
	Decision Tree Learning
	スライド番号 6
	Building a Decision Tree
	Determining which attribute is best (Entropy & Gain)
	Entropy
	Decision Trees
	スライド番号 11
	Information Gain
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 18
	Home work
	スライド番号 23
	Implementation of a Decision Tree �L8-src\DecisionTree.txt
	Implementation of a Decision Tree �L8-src\DecisionTree.txt
	Implementation of a Decision Tree �L8-src\DecisionTree.txt
	Implementation of a Decision Tree �L8-src\DecisionTree.txt
	Implementation of a Decision Tree
	Implementation of a Decision Tree
	Demo
	スライド番号 31
	スライド番号 32
	スライド番号 33
	(3) Work in class
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	(3). Work in class
	ID Trees to Rules
	Refined Rules
	スライド番号 42
	スライド番号 43
	Home Work

