
Machine Learning and ID tree 



What is machine learning (ML)? 
Tom Mitchell (prof. in Carnegie Mellon University) defined 
 
Definition:  
A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks T, as measured 
by P, improves with experience E. 
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Styles of machine learning 
Human have many learning styles 
How about machine? 
 
Supervised Learning 
• machine performs function (e.g., classification) after training on a   

data set where inputs and desired outputs are provided 
     like decision trees 
Unsupervised Learning 
• Learning useful structure without labeled classes, optimization 

criterion, feedback signal, or any other information beyond the 
raw data 

     like clustering 
Semi-supervised Learning  
    ??? Getting important in ML 
     Use unlabeled data to augment a small labeled sample  
     to improve learning? 



Decision Tree Learning 

• Learning Decision Trees 
– Decision tree induction is a simple but powerful learning 

paradigm. In this method a set of training examples is broken 
down into smaller and smaller subsets while at the same time an 
associated decision tree get incrementally developed. At the end 
of the learning process, a decision tree covering the training set 
is returned. 

– The decision tree can be thought of as  a set sentences (in 
Disjunctive Normal Form) written propositional logic. 

– Some characteristics of problems that are well suited to Decision 
Tree Learning are: 

• Attribute-value paired elements 
• Discrete target function 
• Disjunctive descriptions (of target function) 
• Works well with missing or erroneous training data 

 



An example:  



Building a Decision Tree 
 

1. First test all attributes and select the on that would 
function as the best root; 

2. Break-up the training set into subsets based on the 
branches of the root node; 

3. Test the remaining attributes to see which ones fit 
best underneath the branches of the root node; 

4. Continue this process for all other branches until 
a. all examples of a subset are of one type 
b. there are no examples left (return majority 

classification of the parent) 
c. there are no more attributes left (default value 

should be majority classification) 
  

 



Determining which attribute is best (Entropy & Gain) 

 
• Entropy (E) is the minimum number of bits needed in 

order to classify an arbitrary example as yes or no 
• E(S) = Σc

i=1 –pi log2 pi , 
– Where S is a set of training examples, 
– c is the number of classes, and 
– pi is the proportion of the training set that is of class i 

• For our entropy equation 0 log2 0 = 0 
• The information gain G(S,A) where A is an attribute 
• G(S,A) ≡ E(S) - Σv in Values(A)     (|Sv|  /  |S|)  * E(Sv)  
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Entropy 

 S is a sample of training examples 
 p+ is the proportion of positive examples 
 p- is the proportion of negative examples 
 Entropy measures the impurity of S 

Entropy(S) = -p+ log2 p+ - p- log2 p- 



Decision Trees 

example data sets 
classifiers  

and  
prediction models apply information theory 

By Shanon and Weaver (1949) 

The unit of information 
is a bit, and the 
amount of information 
in a single binary 
answer is log2P(v), 
where P(v) is the 
probability of event v 
occurring.  

Information needed for a correct answer, 

 E(S)= I(p/(p+n), n/(p+n)) = - (p/(p+n) log2 p/(p+n) ) - n/(p+n)log2 n/(p+n) ) 

Information contained in the remained sub-trees, 

  Remainder(A) = Σ(pi+ ni) /(p+n) I(pi/(pi+ ni), ni/(pi+ ni)) 

Gain(A) = I(p/(p+n), n/(p+n)) - Remainder(A)  

disorder 

By calculating 
information entropy 



• E(S) = Σc
i=1 –pi log2 pi , 

By knowing Outlook, how much information have I gained? 
 
Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) =  
.940 - .694 = .246 
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Information Gain 
• The information gain of a feature F is the expected reduction in 

entropy resulting from splitting on this feature. 
 
 

     where Sv is the subset of S having value v for feature F. 
• Entropy of each resulting subset weighted by its relative size. 
• Example: 
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S= Result (bounces?) 
F = Size 
|S|=8  
V=1: Small 
     2: Large 
     3: Medium 
|S1| = 4 
|S2| = 1 
|S3| = 3 
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E(S)= I(p/(p+n), n/(p+n)) = - (p/(p+n) log2 p/(p+n) ) - n/(p+n)log2 n/(p+n) ) 
 
 |S|=8 
 
E(S) = - 3/8*log2(3/8) – 5/8*log2(5/8) = 0.954434 
 
 
 

Gain(S, Size) =? 
Gain(S, Color) =? 
Gain(S, Weight) =? 
Gain(S, Rubber) =? 



Four possible splitting: 
 

Qs: 
Which is better? 
Which is the best? 



How about color_Disorder? 
                  weight_Disorder? 
                  rubber_Disorder? 

Color:   0.69 
Weight:  0.94 
Rubber:  0.61 

(0.954434) 



Color_Disorder =   0.69 
Weight_Disorder =  0.94 
Rubber_Disorder =  0.61 

Disorder  

(1) Work in Class: Please write down their formulae. 



For the case of Size = small,  
continue to split this note 

How about other two cases? 
Split or not? Why? 
 - medium?  
 - large? 

Finish splitting? 
Why? 

(2) Work in Class: Please write down 
their formulae. 



Home work 
Write down all formulae of creating 
decision tree (why selecting 
Outlook as root node, and Humidity 
and Wind as the children nodes in ) 
based on information gain (or 
remaining disorder) 



• E(S) = Σc
i=1 –pi log2 pi , 

By knowing Outlook, how much information have I gained? 
 
Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) =  
.940 - .694 = .246 

http://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm 

conditional entropy for rain 

http://www.cs.csi.cuny.edu/~imberman/ai/Entropy and Information Gain.htm


Implementation of a Decision Tree  
L8-src¥DecisionTree.txt 

// compute information content,  
// given # of pos and neg examples 
 double computeInfo(int p, int n) {  
    double total = p + n ; 
    double pos = p / total ; 
    double neg = n / total; 
    double temp; 
    if ((p ==0) || (n == 0)) { 
      temp = 0.0 ; 
    } else { 
     temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))  
                  - (neg * Math.log(neg)/Math.log(2)) ; 
   } 
    return temp ; 
 } 
 

double computeRemainder(Variable variable,          
                                            Vector examples) 
 { 
   int positive[] = new int[variable.labels.size()]; 
   int negative[] = new int[variable.labels.size()]; 
   int index = variable.column; 
   int classIndex = classVar.column; 
   double sum = 0 ; 
   double numValues = variable.labels.size(); 
   double numRecs = examples.size() ; 
   for( int i=0 ; i < numValues ; i++) { 
     String value = variable.getLabel(i);  
     Enumeration enum = examples.elements(); 
     while (enum.hasMoreElements()) { 
       String record[] = (String[])enum.nextElement();  
       // get next record 
       if (record[index].equals(value)) { 
        if (record[classIndex].equals("yes")) { 
            positive[i]++; 
        } else  { 
            negative[i]++; 
        } 
       } 
     } /* endwhile */ 

  double weight = (positive[i]+negative[i]) / numRecs; 
  double myrem = weight * computeInfo(positive[i],  
                                                             negative[i]); 
   sum = sum + myrem ; 
  } /* endfor */ 
  return sum ; 
} 
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Implementation of a Decision Tree  
// return the variable with most gain 
 Variable chooseVariable(Hashtable variables, Vector examples) 
 { 
   Enumeration enum = variables.elements() ; 
   double gain = 0.0, bestGain = 0.0 ; 
   Variable best = null ; 
   int counts[] ; 
   counts = getCounts(examples) ; 
   int pos = counts[0] ; 
   int neg = counts[1] ; 
   double info = computeInfo(pos, neg); 
 
   while(enum.hasMoreElements()) { 
      Variable tempVar = (Variable)enum.nextElement() ; 
      gain = info - computeRemainder(tempVar, examples); 
 
      if (gain > bestGain) { 
        bestGain = gain ; 
        best = tempVar; 
      } 
 
   } 
   return best;  // 
 } 



Implementation of a Decision Tree  
// return the variable with most gain 
 Variable chooseVariable(Hashtable variables, Vector examples) 
 { 
   Enumeration enum = variables.elements() ; 
   double gain = 0.0, bestGain = 0.0 ; 
   Variable best = null ; 
   int counts[] ; 
   counts = getCounts(examples) ; 
   int pos = counts[0] ; 
   int neg = counts[1] ; 
   double info = computeInfo(pos, neg); 
 
   while(enum.hasMoreElements()) { 
      Variable tempVar = (Variable)enum.nextElement() ; 
      gain = info - computeRemainder(tempVar, examples); 
 
      if (gain > bestGain) { 
        bestGain = gain ; 
        best = tempVar; 
      } 
 
   } 
   return best;  // 
 } 

Which has the best gain?  
 
Gain(S, Size) =? 
Gain(S, Color) =? 
Gain(S, Weight) =? 
Gain(S, Rubber) =? 



Demo 

• A decision tree. (Run LearnApplet.java in Eclipse ) 

    C:Huang/Java2012/AI-2/(bin,src)/decisionTree/…… 
         L8-src¥LearnApplet1.zip 

     

• Example data 
    L8-src¥LearnApplet1¥resttree.dat.txt 
      resttree.dat 
      resttree.dfn 
 



Starting DecisionTree  

Info = 1.0 

reservation gain = 0.020720839623907805 

alternate gain = 0.0 

FriSat gain = 0.020720839623907805 

hungry gain = 0.19570962879973086 

price gain = 0.19570962879973075 

patrons gain = 0.5408520829727552 

waitEstimate gain = 0.20751874963942196 

bar gain = 0.0 

rtype gain = 1.1102230246251565E-16 

raining gain = 0.0 

Choosing best variable: patrons 

 Subset - there are 4 records with patrons = some 

 Subset - there are 6 records with patrons = full 

Info = 0.9182958340544896 

reservation gain = 0.2516291673878229 

alternate gain = 0.10917033867559889 

FriSat gain = 0.10917033867559889 

hungry gain = 0.2516291673878229 

price gain = 0.2516291673878229 

patrons gain = 0.0 

waitEstimate gain = 0.2516291673878229 

bar gain = 0.0 

rtype gain = 0.2516291673878229 

raining gain = 0.10917033867559889 

Choosing best variable: reservation 

 Subset - there are 2 records with reservation = yes 

 Subset - there are 4 records with reservation = no 

Info = 1.0 

reservation gain = 0.0 

alternate gain = 0.31127812445913283 

FriSat gain = 0.31127812445913283 

hungry gain = 0.31127812445913283 

price gain = 0.0 

patrons gain = 0.0 

waitEstimate gain = 0.5 

bar gain = 0.0 

rtype gain = 0.0 

raining gain = 0.31127812445913283 

Choosing best variable: waitEstimate 

 Subset - there are 0 records with waitEstimate = 0-10 

 Subset - there are 2 records with waitEstimate = 30-60 

Results: 



Info = 1.0 

reservation gain = 0.0 

alternate gain = 0.0 

FriSat gain = 1.0 

hungry gain = 0.0 

price gain = 0.0 

patrons gain = 0.0 

waitEstimate gain = 0.0 

bar gain = 1.0 

rtype gain = 1.0 

raining gain = 0.0 

Choosing best variable: FriSat 

 Subset - there are 1 records with FriSat = no 

 Subset - there are 1 records with FriSat = yes 

 Subset - there are 1 records with waitEstimate = 10-30 

 Subset - there are 1 records with waitEstimate = >60 

 Subset - there are 2 records with patrons = none 

DecisionTree -- classVar = ClassField 

Interior node - patrons 

Link - patrons=some 

Leaf node - yes 

Link - patrons=full 

Interior node - reservation 

Link - reservation=yes 

Leaf node - no 

Link - reservation=no 

Interior node - waitEstimate 

Link - waitEstimate=0-10 

Leaf node - yes 

Link - waitEstimate=30-60 

Interior node - FriSat 

Link - FriSat=no 

Leaf node - no 

Link - FriSat=yes 

Leaf node - yes 

Link - waitEstimate=10-30 

Leaf node - yes 

Link - waitEstimate=>60 

Leaf node - no 

Link - patrons=none 

Leaf node - no 

Stopping DecisionTree - success! 

Output: 



Info = 1.0 

waitEstimate gain = 0.0 

raining gain = 0.0 

hungry gain = 0.0 

price gain = 1.0 

FriSat gain = 0.0 

bar gain = 1.0 

patrons gain = 0.0 

alternate gain = 0.0 

rtype gain = 1.0 

reservation gain = 1.0 

Choosing best variable: price 

 Subset - there are 1 records with price = $$$ 

 Subset - there are 1 records with price = $ 

 Subset - there are 0 records with price = $$ 

 Subset - there are 2 records with waitEstimate = >60 

 Subset - there are 2 records with patrons = none 

DecisionTree -- classVar = ClassField 

Interior node - patrons 

Link - patrons=some 

Leaf node - yes 

Link - patrons=full 

Interior node - waitEstimate 

Link - waitEstimate=0-10 

Leaf node - yes 

Link - waitEstimate=30-60 

Interior node - FriSat 

Link - FriSat=no 

Leaf node - no 

Link - FriSat=yes 

Leaf node - yes 

Link - waitEstimate=10-30 

Interior node - price 

Link - price=$$$ 

Leaf node - no 

Link - price=$ 

Leaf node - yes 

Link - price=$$ 

Leaf node - yes 

Link - waitEstimate=>60 

Leaf node - no 

Link - patrons=none 

Leaf node - no 

Stopping DecisionTree - success! 

Draw a decision tree! 



(3) Work in class 
Please draw a decision tree for p28 ad p29 the 
running results of the decision tree! 



decision tree from the running results  

Patrons 

yes no reservation 

FriSat 

no 

some none full 

yes 

yes 

waitEstimate 

no 

0-10 30-60 

yes 

10-30 

no 

>60 

yes 

yes 

no 

no 



alternate bar  FriSat hungry patrons price  raining reservation rtype       waitEstimate ClassField 
 
yes       no   no      yes    some    $$$   no      yes           French  0-10            yes 
yes       no   no      yes    full        $       no       no            Thai      30-60          no 
no         yes no      no      some   $        no      no            Burger  0-10             yes 
yes       no   yes    yes     full       $        no      no            Thai     10-30            yes 
yes       no   yes    no      full        $$$    no     yes           French  >60              no 
no        yes  no      yes    some    $$      yes    yes          Italian    0-10             yes 
no        yes  no      no      none    $        yes    no            Burger   0-10             no 
no        no    no    yes     some    $$      yes    yes          Thai        0-10            yes 
no        yes  yes    no      full        $        yes   no            Burger    >60             no 
yes      yes  yes    yes     full        $$$    no     yes          Italian    10-30           no 
no        no   no      no       none    $        no     no           Thai        0-10            no 
yes      yes  yes    yes     full        $        no     no           Burger    30-60          yes 

Patrons   reservation  ClassField 

 full      no          no 
            no         yes 
            yes       no 
            no         no 
            yes       no 
            no         yes 

Reservation waitEstimate    ClassField 

 no           30-60        no 
                10-30       yes 
                 >60          no 
                 30-60       yes 

waitEstimate   FriSat          ClassField 

 30-60       no        no 
                 yes       yes 

Whole dataset 

Subset of dataset 



Calculate the following conditional entropy: 
  
 
Remainder(reservation/patron) =? 
 
Remainder(waitEstimate/reservation) = ? 
 
Remainder(FriSat/waitEstimate)= ? 
 



Calculate  
 
Remainder(reservation/patron) =  
   2/6*0 + 4/6*(-2/4*log2 (2/4) -2/4*log2 (2/4))  
 
Remainder(waitEstimate/reservation) = ? 
   1/4*0 + 1/4*0 + 2/4*(-1/2*log2(1/2) -1/2*log2(1/2)) = 0.5 
 
Remainder(FriSat/waitEstimate)= ? 
    1/2*0 +1/2*0 = 0 
 



(3). Work in class 
Please draw a decision tree for p12 ad p13 the 
running results of the decision tree! 

Patrons 

yes no reservation 

FriSat 

no 

some none full 

yes 

yes 

waitEstimate 

no 

0-10 30-60 

yes 

10-30 

no 

>60 

yes 

yes 

no 

no 



ID Trees to Rules  
Once an ID tree is constructed successfully, it can be used to 
generate a rule-set, which will serve to perform the necessary 
classifications of the ID tree. This is done by creating a single rule for 
each path from the root to a leaf in the ID tree. 
 

R1:  if   (size = large) 
        then (ball does bounce) 
R2:  if   (size = medium) 
        then (ball does not bounce) 
R3:  if   (size = small) 
             (rubber = no) 
         then (ball does not bounce) 
R4:   if   (size = small) 
              (rubber = yes) 
         then (ball does bounce) 



Refined Rules  

R1:  if   (size = large) 
        then (ball does bounce) 
R2:  if   (size = medium) 
        then (ball does not bounce) 
R3:  if   (rubber = no) 
         then (ball does not bounce) 
R4:   if   (size = small) 
             (rubber = yes) 
        then (ball does bounce) 

R1:  if   (size = large) 
        then (ball does bounce) 
R2:  if   (size = medium) 
        then (ball does not bounce) 
R3:  if   (size = small) 
             (rubber = no) 
         then (ball does not bounce) 
R4:   if   (size = small) 
              (rubber = yes) 
         then (ball does bounce) 

Rules are used in rule-based 
(forward chaining or backward 
chaining) systems. 



R3:  if   (size = small) 
             (rubber = no) 
        then (ball does not bounce) 

 Eliminating unnecessary rule conditions 

Looking at the probability with  
    event A = (size=small) and event B = (ball does not bounce) 
 
Calculate: 
      P(B|A) = (3 non rubber balls do not bounce / 8 total) = 0.375 
      P(B) = (3 non rubber balls do not bounce / 8 total) = 0.375 
 
      P(B|A) = P(B) therefore B is independent of A 
 

What does 
this mean? 

A and B  no relation, no dependency 

R3:  if   (size = small) 
             (rubber = no) 
        then (ball does not bounce) 



R3:  if (size = small) 
           (rubber = no) 
        then (ball does not bounce) 

 Eliminating unnecessary rule conditions 

Looking at the probability with  
    event A = (rubber=no) and event B = (ball does not bounce) 
 
Calculate: 
    P(B|A) = (3 balls do not bounce / 8 total) = 3/8 
    P(B) = (5 balls do not bounce  / 8 total) = 5/8 
 
    P(B|A) ≠ P(B) therefore A and B are not independent 
 
 
 

What does 
this mean? 

No change on R3 

 R3: if   (rubber = no) 
       then (ball does not bounce) 



Home Work 

Read the following site: 
 
http://ai-depot.com/Tutorial/RuleBased.html 
 

http://ai-depot.com/Tutorial/RuleBased.html
http://ai-depot.com/Tutorial/RuleBased.html
http://ai-depot.com/Tutorial/RuleBased.html
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