Machine Learning and ID tree

What is machine learning (ML)?

Tom Mitchell (prof. in Carnegie Mellon University) defined

Definition:

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E.

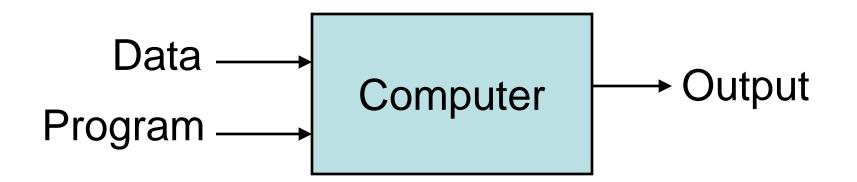
Machine Learning:

Study of algorithms that

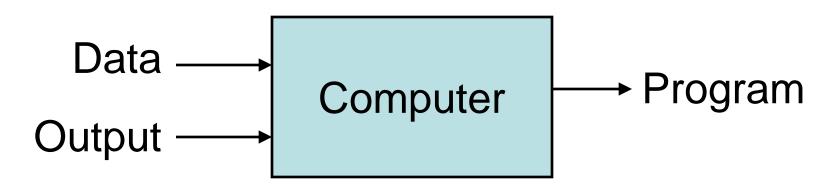
- improve their performance P
- at some <u>task</u> T
- with <u>experience</u> E

well-defined learning task: <P,T,E>

Traditional Programming



Machine Learning



Styles of machine learning

Human have many learning styles How about machine?

Supervised Learning

 machine performs function (e.g., classification) after training on a data set where inputs and desired outputs are provided like decision trees

Unsupervised Learning

 Learning useful structure without labeled classes, optimization criterion, feedback signal, or any other information beyond the raw data

like clustering

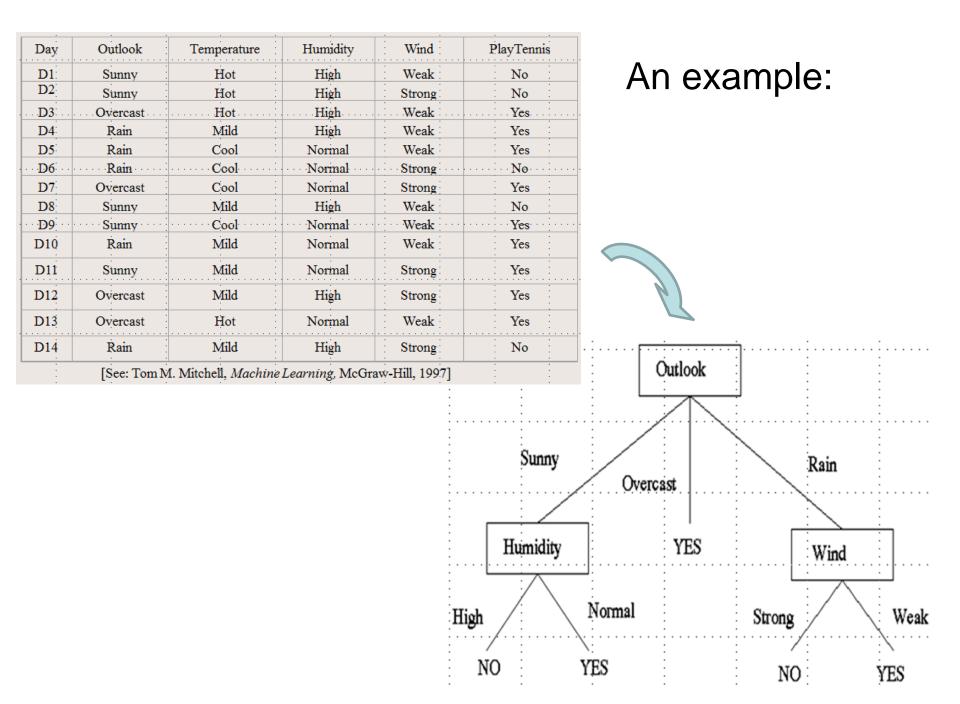
- Semi-supervised Learning
 - ??? Getting important in ML

Use unlabeled data to augment a small labeled sample to improve learning?

Decision Tree Learning

Learning Decision Trees

- Decision tree induction is a simple but powerful learning paradigm. In this method a set of training examples is broken down into smaller and smaller subsets while at the same time an associated decision tree get incrementally developed. At the end of the learning process, a decision tree covering the training set is returned.
- The decision tree can be thought of as a set sentences (in Disjunctive Normal Form) written propositional logic.
- Some characteristics of problems that are well suited to Decision Tree Learning are:
 - Attribute-value paired elements
 - Discrete target function
 - Disjunctive descriptions (of target function)
 - Works well with missing or erroneous training data

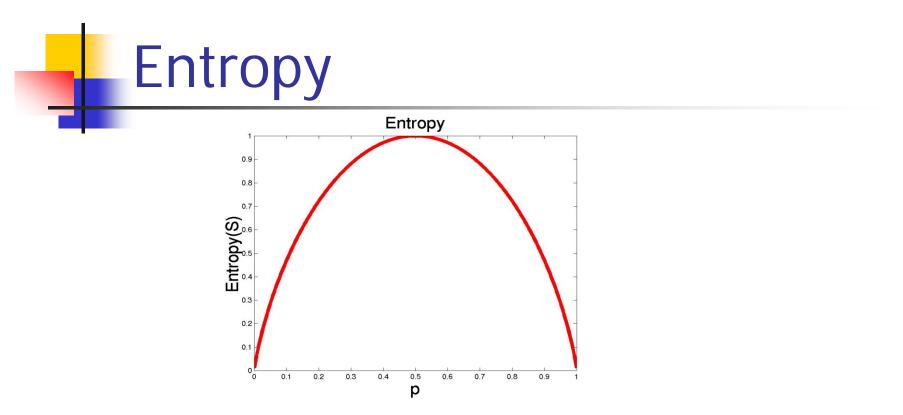


Building a Decision Tree

- 1. First test all attributes and select the on that would function as the best root;
- 2. Break-up the training set into subsets based on the branches of the root node;
- 3. Test the remaining attributes to see which ones fit best underneath the branches of the root node;
- 4. Continue this process for all other branches untila. all examples of a subset are of one type
 - b. there are no examples left (return majority classification of the parent)
 - c. there are no more attributes left (default value should be majority classification)

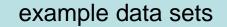
Determining which attribute is best (Entropy & Gain)

- Entropy (E) is the minimum number of bits needed in order to classify an arbitrary example as yes or no
- $E(S) = \Sigma_{i=1}^{c} p_i \log_2 p_i$,
 - Where S is a set of training examples,
 - c is the number of classes, and
 - p_i is the proportion of the training set that is of class i
- For our entropy equation $0 \log_2 0 = 0$
- The information gain G(S,A) where A is an attribute
- $G(S,A) \equiv E(S) \Sigma_{v \text{ in Values}(A)}$ $(|S_v| / |S|) * E(Sv)$



- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_ is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = -p₊ log₂ p₊ - p₋ log₂ p₋ _{ICS320}

Decision Trees



By calculating information entropy

apply information theory

By Shanon and Weaver (1949)

classifiers and prediction models

The unit of information is a bit, and the amount of information in a single binary answer is $log_2P(v)$, where P(v) is the probability of event voccurring. Information needed for a correct answer,

 $E(S) = I(p/(p+n), n/(p+n)) = - (p/(p+n) log_2 p/(p+n)) - n/(p+n) log_2 n/(p+n))$

Information contained in the remained sub-trees,

Remainder(A) = $\Sigma(p_i + n_i) / (p+n) I(p_i / (p_i + n_i), n_i / (p_i + n_i))$

Gain(A) = I(p/(p+n), n/(p+n)) - Remainder(A)

disorder

Linunpie c	
Outlook	Play Tennis
Sunny	No
Sunny	No
Overcast	Yes
Rain	Yes
Rain	Yes
Rain	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rain	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rain	No

P(Play Tennis = Yes) = 9/14P(Play Tennis = No) = 5/14 P(Outlook = Rain and Play Tennis = yes) = 3/5P(Outlook = Rain and Play Tennis = no) = 2/5

Entropy(
$$S_{rain}$$
) = $-\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = .971$

Entropy(
$$S_{overcast}$$
) = $-\frac{4}{4}\log_2\left(\frac{4}{4}\right) - 0\log_2(0) = 0$

Entropy(S_{sump}) =
$$-\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = .971$$

$$P(rain) = 5/14$$
 $P(overcast) = 4/14$ $P(sunny) = 5/14$

Entropy (Play Tennis | Outlook) = $-\frac{5}{14}(.971) - \frac{4}{14}(0) - \frac{5}{14}(.971) = .694$

By knowing Outlook, how much information have I gained?

Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) = .940 - .694 = .246

 $\mathsf{E}(\mathsf{S}) = \Sigma^{c}_{i=1} - p_{i} \log_{2} p_{i}$

Entropy(Play Tennis) = $-9/14 \log_2 (9/14) - 5/14 \log_2 (5/14) = .940$

Information Gain

The information gain of a feature F is the expected reduction in ۲ entropy resulting from splitting on this feature.

$$Gain(S,F) = Entropy(S) - \sum_{v \in Values(F)} \frac{|S_v|}{|S|} Entropy(S_v)$$

where S_v is the subset of S having value v for feature F.

- Entropy of each resulting subset weighted by its relative size.
- Example:

-					
Ball	Size	Color	Weight	Rubber?	Result (Bounces?)
1	Small	green	Light	yes	yes
2	Small	blue	Medium	no	no
3	Medium	red	Medium	no	no
4	Small	red	Medium	yes	yes
5	Large	green	Heavy	yes	yes
6	Medium	blue	Heavy	yes	no
7	Medium	green	Heavy	yes	no
8	Small	red	Light	no	no

S= Result (bounces?) F = Size |S|=8V=1: Small 2: Large 3: Medium $|S_1| = 4$ $|S_2| = 1$ $|S_3| = 3$

igure C1: Identification Tree Training Data

 $\mathsf{E}(\mathsf{S}) = \mathsf{I}(\mathsf{p}/(\mathsf{p}+\mathsf{n}),\,\mathsf{n}/(\mathsf{p}+\mathsf{n})) = - \left(\mathsf{p}/(\mathsf{p}+\mathsf{n})\,\log 2\,\mathsf{p}/(\mathsf{p}+\mathsf{n})\,\right) - \mathsf{n}/(\mathsf{p}+\mathsf{n})\log 2\,\mathsf{n}/(\mathsf{p}+\mathsf{n})\right)$

|S|=8

$$\mathsf{E}(\mathsf{S}) = -3/8*\log 2(3/8) - 5/8*\log 2(5/8) = 0.954434$$

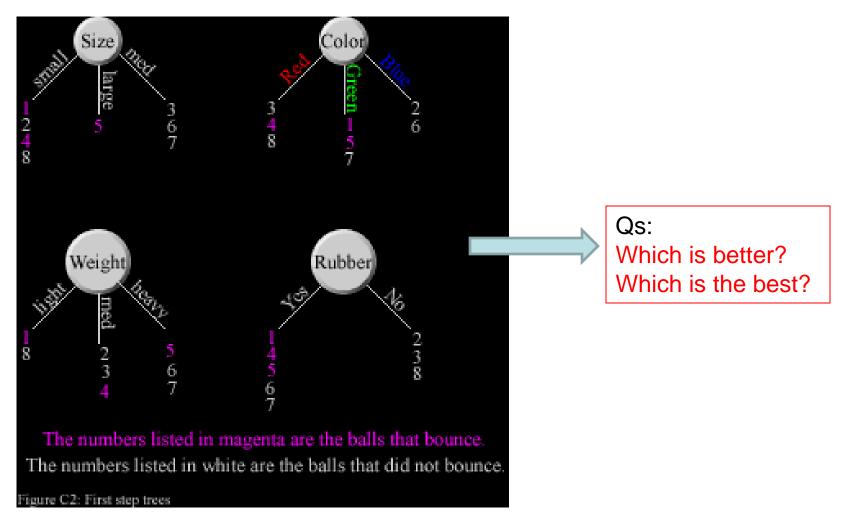
$$Gain(S, F) = Entropy(S) - \sum_{v \in Values(F)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Size) =? Gain(S, Color) =? Gain(S, Weight) =? Gain(S, Rubber) =?

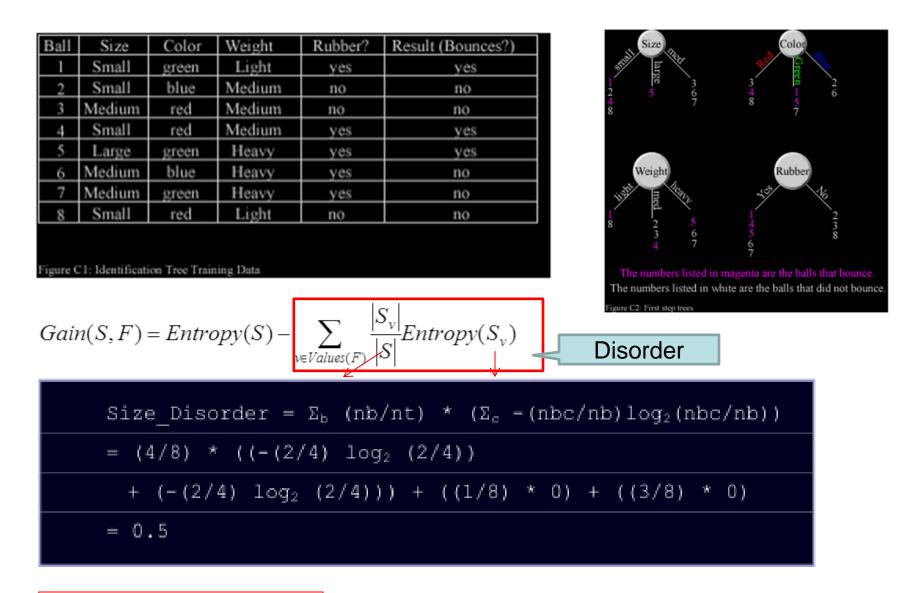
Ball	Size	Color	Weight	Rubber?	Result (Bounces?)
1	Small	green	Light	yes	yes
2	Small	blue	Medium	no	no
3	Medium	red	Medium	no	no
4	Small	red	Medium	yes	yes
5	Large	green	Heavy	yes	yes
6	Medium	blue	Heavy	yes	no
7	Medium	green	Heavy	yes	no
8	Small	red	Light	no	no

Figure C1: Identification Tree Training Data

Four possible splitting:



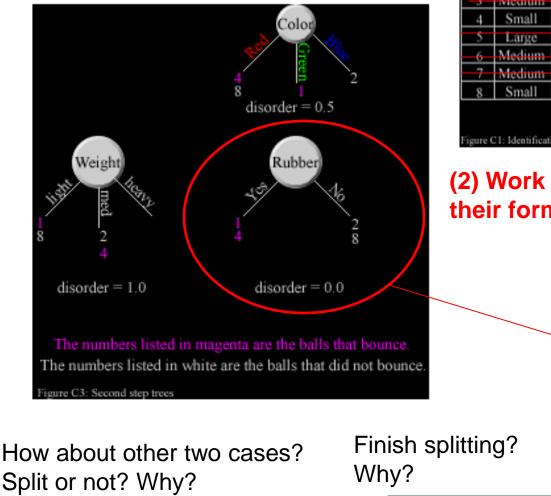
						Size	Color
Ball	Size	Color	Weight	Rubber?	Result (Bounces?)	affull as they	
1	Small	green	Light	yes	yes	rge	3 3 2
2	Small	blue	Medium	no	no	4 8	6 4 5 7 8 5 7
3	Medium	red	Medium	no	no		
4	Small	red	Medium	yes	yes		
5	Large	green	Heavy	yes	yes	Weight	Rubber
6	Medium	blue	Heavy	yes	no		1. 49 Ma
7	Medium	green	Heavy	yes	no		
8	Small	red	Light	no	no	8 2 3	5 4 3 6 5 8
Gai	n(S,F)	(0.95 = Entro	4434) >py(S)− ™	$\sum_{\mathbb{E} Values(F)} \frac{ S }{ S }$	$\frac{S_{v}}{S} = Entropy(S_{v})$	Figure C2: First step in	
						/nb)log2(nbc/nł	b))
=	(4/8)	* ((-(2/4) 1	log ₂ (2	(4))		
	+ (-(:	2/4) 1	.og ₂ (2/	4))) +	((1/8) * 0)	+ ((3/8) * 0)	S:Size S =
=	0.5						V=1: Small 2: Large
How	/ about	weigh	_Disordei t_Disord r_Disord	er?		Color: 0.69 Weight: 0.94 Rubber: 0.61	$ S_1 = 4$ $ S_2 = 1$ $ S_3 = 3$



Color_Disorder = 0.69 Weight_Disorder = 0.94 Rubber_Disorder = 0.61

(1) Work in Class: Please write down their formulae.

For the case of Size = small, continue to split this note

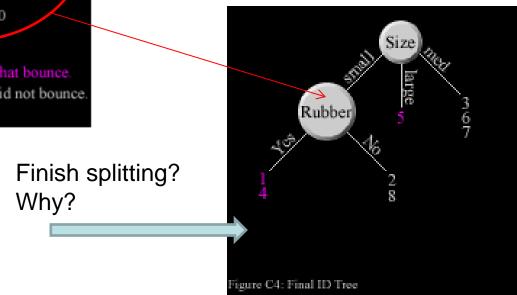


- large?

Size Color Weight Rubber? Result (Bounces?) Ball Small Light green ves yes Small Medium blue no no Medium Medium red no no red Medium yes yes Heavy green yes yes blue Heavy yes no Medium Heavy green yes no red Light no no

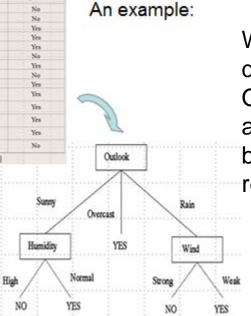
Figure C1: Identification Tree Training Data

(2) Work in Class: Please write down their formulae.



Home work

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
DI	Stanary	Hot	High	Weak	No
D2	Stanary	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mid	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Ceol	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Ceol	Normal	Weak	Ves
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Bot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No



Write down all formulae of creating decision tree (why selecting Outlook as root node, and Humidity and Wind as the children nodes in) based on information gain (or remaining disorder) http://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm

Outlook	Play Tennis
Sunny	No
Sunny	No
Overcast	Yes
Rain	Yes
Rain	Yes
Rain	No
Overcast	Yes
Sunny	No
Sunny	Yes
Rain	Yes
Sunny	Yes
Overcast	Yes
Overcast	Yes
Rain	No

conditional entropy for rain

P(Outlook = Rain and Play Tennis = yes) = 3/5P(Outlook = Rain and Play Tennis = no) = 2/5

Entropy(
$$S_{rain}$$
) = $-\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right) = .971$

Entropy(
$$S_{onwcast}$$
) = $-\frac{4}{4}\log_2\left(\frac{4}{4}\right) - 0\log_2(0) = 0$

Entropy(
$$S_{\text{comp}}$$
) = $-\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right) = .971$

$$P(rain) = 5/14$$
 $P(overcast) = 4/14$ $P(sunny) = 5/14$

Entropy (Play Tennis | Outlook) = $-\frac{5}{14}(.971) - \frac{4}{14}(0) - \frac{5}{14}(.971) = .694$

By knowing Outlook, how much information have I gained?

Entropy (Play Tennis) - Entropy (Play Tennis | Outlook) = .940 - .694 = .246

P(Play Tennis = Yes) = 9/14P(Play Tennis = No) = 5/14

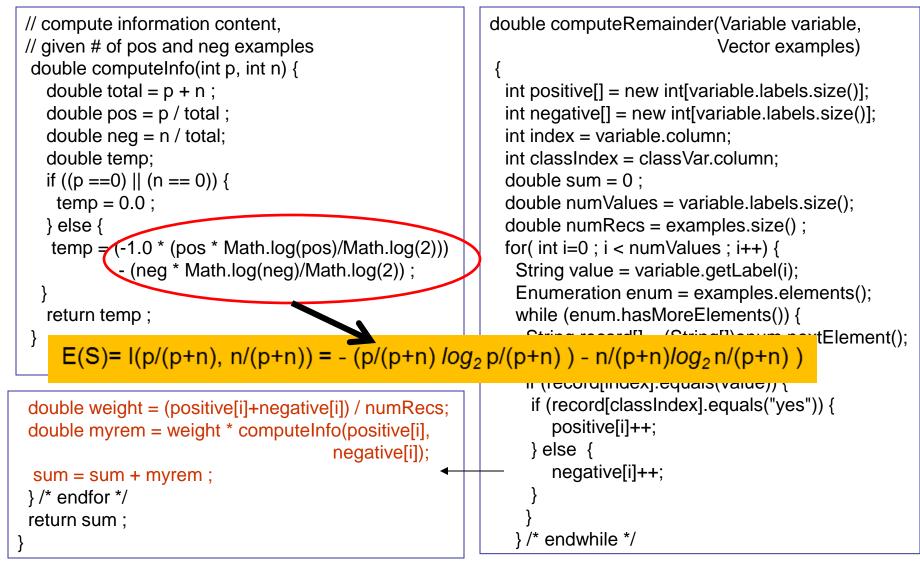
Entropy(Play Tennis) = $-9/14 \log_2 (9/14) - 5/14 \log_2 (5/14) = .940$

•
$$E(S) = \Sigma_{i=1}^{c} -p_i \log_2 p_i$$

L8-src¥DecisionTree.txt

<pre>// compute information content, // given # of pos and neg examples double computeInfo(int p, int n) { double total = p + n ; double pos = p / total ; double neg = n / total;</pre>	<pre>double computeRemainder(Variable variable,</pre>
Remainder(A) = $\Sigma(p_i + n_i) / (p_i + n_i)$	
<pre>} else { temp = (-1.0 * (pos * Math.log(pos)/Math.log(2)))</pre>	<pre>double numRecs = examples.size() ; for(int i=0 ; i < numValues ; i++) { String value = variable.getLabel(i); Enumeration enum = examples.elements(); while (enum.hasMoreElements()) { String record[] = (String[])enum.nextElement(); // get next record</pre>
double weight = (positive[i]+negative[i]) / numRecs; double myrem = weight * computeInfo(positive[i], negative[i]);	<pre>if (record[index].equals(value)) { if (record[classIndex].equals("yes")) { positive[i]++; } else { }</pre>
<pre>sum = sum + myrem ; } /* endfor */ return sum ; }</pre>	<pre>negative[i]++; } }/* endwhile */</pre>

L8-src¥DecisionTree.txt



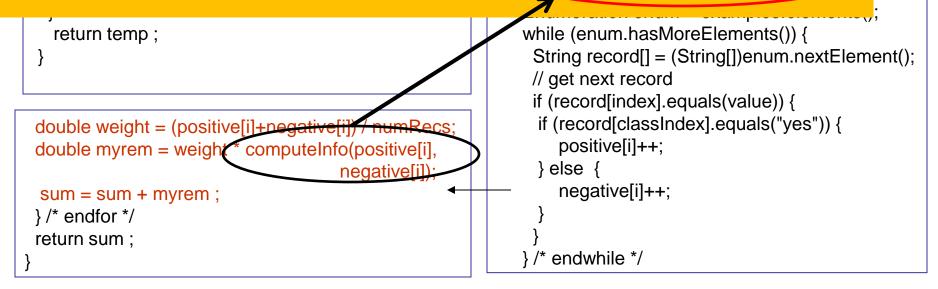
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
double computeInfo(int p, int n) {
double total = p + n ;
double pos = p / total ;
double neg = n / total;
double temp;
if ((p ==0) (n == 0)) {
temp = 0.0;

double computeRemainder(Variable variable, Vector examples)

int positive[] = new int[variable.labels.size()]; int negative[] = new int[variable.labels.size()]; int index = variable.column; int classIndex = classVar.column; double sum = 0; double numValues = variable.labels.size();

Remainder(A) = $\Sigma(p_i + n_i) / (p+n) (p_i / (p_i + n_i), n_i / (p_i + n_i))$



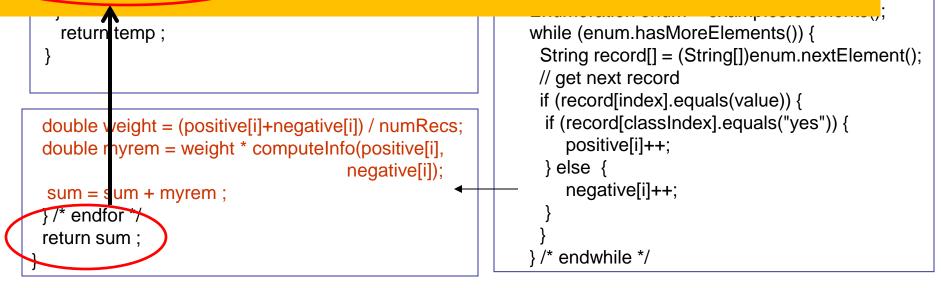
L8-src¥DecisionTree.txt

// compute information content,
// given # of pos and neg examples
double computeInfo(int p, int n) {
double total = p + n ;
double pos = p / total ;
double neg = n / total;
double temp;
if ((p ==0) (n == 0)) {
temp = 0.0;
$\lambda = 1 + \epsilon$

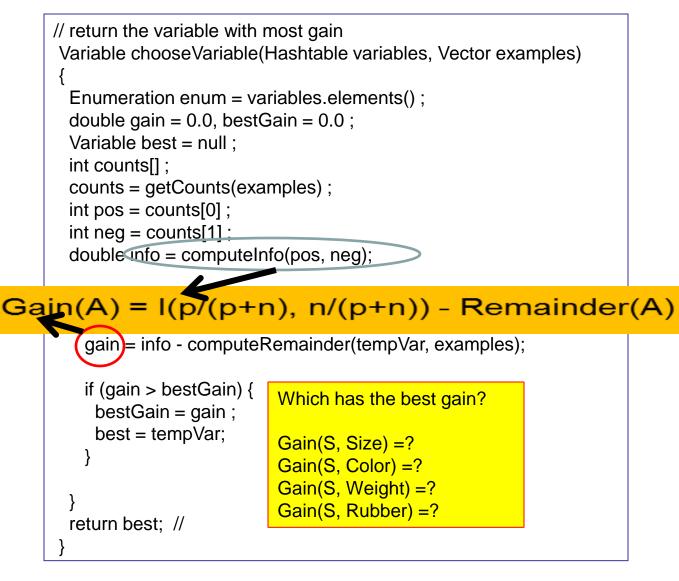
double computeRemainder(Variable variable, Vector examples)

int positive[] = new int[variable.labels.size()]; int negative[] = new int[variable.labels.size()]; int index = variable.column; int classIndex = classVar.column; double sum = 0; double numValues = variable.labels.size();

Remainder(A) $\Rightarrow \Sigma(p_i + n_i) / (p+n) I(p_i / (p_i + n_i), n_i / (p_i + n_i))$



```
// return the variable with most gain
Variable chooseVariable(Hashtable variables, Vector examples)
  Enumeration enum = variables.elements();
  double gain = 0.0, bestGain = 0.0;
  Variable best = null:
  int counts[];
  counts = getCounts(examples);
  int pos = counts[0];
  int neg = counts[1];
  double info = compute lnfo(pos, neg);
  while(enum.hasMoreElements()) {
   Variable tempVar = (Variable)enum.nextElement();
   gain = info - computeRemainder(tempVar, examples);
   if (gain > bestGain) {
     bestGain = gain ;
     best = tempVar;
  return best; //
```



Demo

• A decision tree. (Run LearnApplet.java in Eclipse)

C:Huang/Java2012/AI-2/(bin,src)/decisionTree/..... L8-src¥LearnApplet1.zip

• Example data

L8-src¥LearnApplet1¥resttree.dat.txt

resttree.dat

resttree.dfn

Results:

Starting DecisionTree lnfo = 1.0reservation gain = 0.020720839623907805 alternate gain = 0.0FriSat gain = 0.020720839623907805 hungry gain = 0.19570962879973086 price gain = 0.19570962879973075 patrons gain = 0.5408520829727552 waitEstimate gain = 0.20751874963942196 bar gain = 0.0rtype gain = 1.1102230246251565E-16 raining gain = 0.0Choosing best variable: patrons Subset - there are 4 records with patrons = some Subset - there are 6 records with patrons = full Info = 0.9182958340544896 reservation gain = 0.2516291673878229 alternate gain = 0.10917033867559889 FriSat gain = 0.10917033867559889 hungry gain = 0.2516291673878229 price gain = 0.2516291673878229

patrons gain = 0.0waitEstimate gain = 0.2516291673878229 bar gain = 0.0rtype gain = 0.2516291673878229 raining gain = 0.10917033867559889 Choosing best variable: reservation Subset - there are 2 records with reservation = yes Subset - there are 4 records with reservation = no lnfo = 1.0reservation gain = 0.0alternate gain = 0.31127812445913283 FriSat gain = 0.31127812445913283 hungry gain = 0.31127812445913283 price gain = 0.0patrons gain = 0.0waitEstimate gain = 0.5bar gain = 0.0rtype gain = 0.0raining gain = 0.31127812445913283 Choosing best variable: waitEstimate Subset - there are 0 records with waitEstimate = 0-10 Subset - there are 2 records with waitEstimate = 30-60

Output:

lnfo = 1.0Interior node - reservation Link - reservation=yes reservation gain = 0.0alternate gain = 0.0Leaf node - no FriSat gain = 1.0Link - reservation=no hungry gain = 0.0Interior node - waitEstimate price gain = 0.0Link - waitEstimate=0-10 Leaf node - yes patrons gain = 0.0waitEstimate gain = 0.0Link - waitEstimate=30-60 bar gain = 1.0Interior node - FriSat rtype gain = 1.0Link - FriSat=no raining gain = 0.0Leaf node - no Choosing best variable: FriSat Link - FriSat=yes Subset - there are 1 records with FriSat = no Leaf node - yes Subset - there are 1 records with FriSat = yes Link - waitEstimate=10-30 Leaf node - yes Subset - there are 1 records with waitEstimate = 10-30Subset - there are 1 records with waitEstimate = >60Link - waitEstimate=>60 Subset - there are 2 records with patrons = none Leaf node - no DecisionTree -- classVar = ClassField Link - patrons=none Leaf node - no Interior node - patrons Link - patrons=some Stopping DecisionTree - success! Leaf node - yes Link - patrons=full

Info = 1.0

waitEstimate gain = 0.0raining gain = 0.0hungry gain = 0.0price gain = 1.0FriSat gain = 0.0bar gain = 1.0patrons gain = 0.0alternate gain = 0.0rtype gain = 1.0reservation gain = 1.0Choosing best variable: price Subset - there are 1 records with price = \$\$\$ Subset - there are 1 records with price = \$ Subset - there are 0 records with price = Subset - there are 2 records with waitEstimate = >60Subset - there are 2 records with patrons = none DecisionTree -- classVar = ClassField Interior node - patrons Link - patrons=some Leaf node - yes Link - patrons=full Interior node - waitEstimate

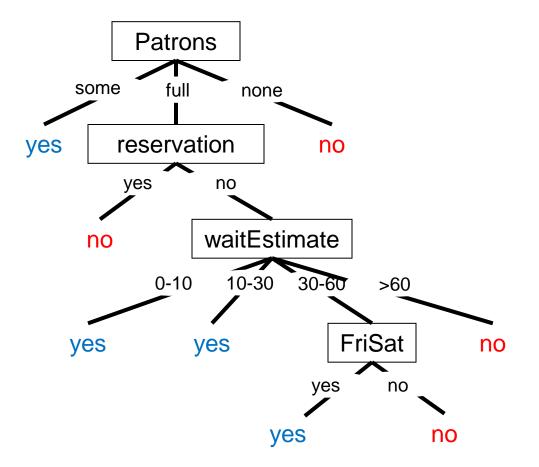
Link - waitEstimate=0-10 Leaf node - yes Link - waitEstimate=30-60 Interior node - FriSat Link - FriSat=no Leaf node - no Link - FriSat=yes Leaf node - yes Link - waitEstimate=10-30 Interior node - price Link - price=\$\$\$ Leaf node - no Link - price=\$ Leaf node - yes Link - price=\$\$ Leaf node - yes Link - waitEstimate=>60 Leaf node - no Link - patrons=none Leaf node - no Stopping DecisionTree - success!

Draw a decision tree!

(3) Work in class

Please draw a decision tree for p28 ad p29 the running results of the decision tree!

decision tree from the running results



Whole dataset

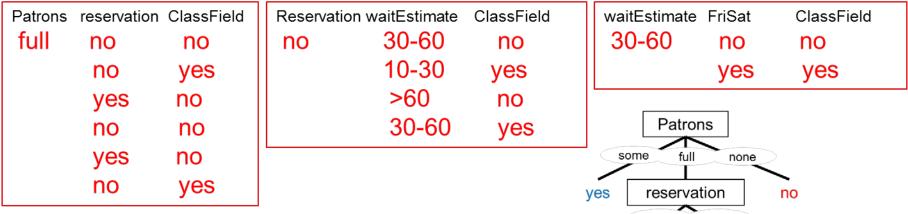
alternate bar FriSat hungry patrons price raining reservation rtype waitEstimate ClassField

yes	no no	yes	some	\$\$\$	no	yes	French 0-10	yes
yes	no no	yes	full	\$	no	no	Thai 30-60	no
no	yes no	no	some	\$	no	no	Burger 0-10	yes
yes	no yes	yes	full	\$	no	no	Thai 10-30	yes
yes	no yes	no	full	\$\$\$	no	yes	French >60	no
no	yes no	yes	some	\$\$	yes	yes	Italian 0-10	yes
no	yes no	no	none	\$	yes	no	Burger 0-10	no
no	no no	yes	some	\$\$	yes	yes	Thai 0-10	yes
no	yes yes	no	full	\$	yes	no	Burger >60	no
yes	yes yes	yes	full	\$\$\$	no	yes	Italian 10-30	no
no	no no	no	none	\$	no	no	Thai 0-10	no
yes	yes yes	yes	full	\$	no	no	Burger 30-60	yes
1								

Subset of dataset

Patrons	s reservatio	on ClassField	Reservati	on waitEstimate	ClassField	waitEstima	te FriSat	ClassField
full	no	no	no	30-60	no	30-60	no	no
	no	yes		10-30	yes		yes	yes
	yes	no		>60	no			
	no	no		30-60	yes			
	yes	no			-			
	no	ves						

Subset of dataset

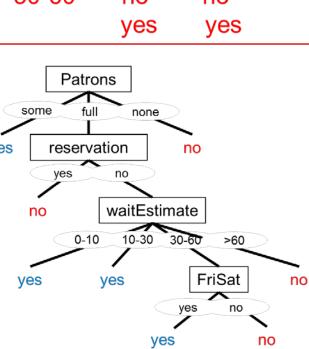


Calculate the following conditional entropy:

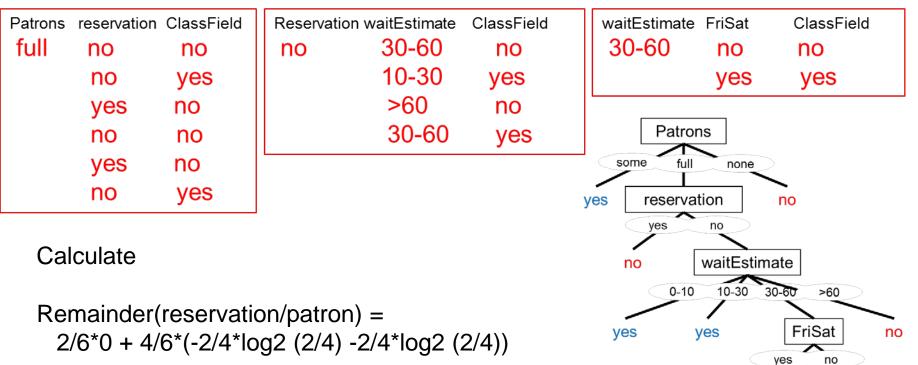
Remainder(reservation/patron) =?

Remainder(waitEstimate/reservation) = ?

Remainder(FriSat/waitEstimate)= ?



Subset of dataset



yes

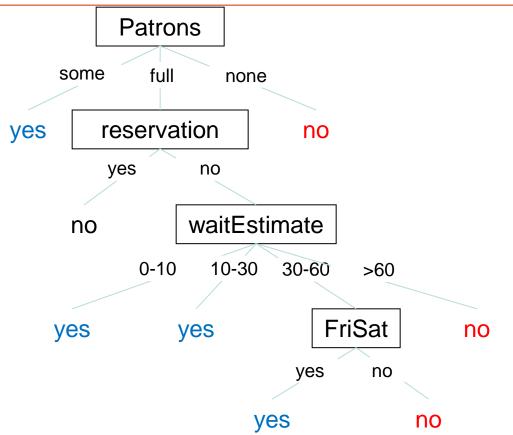
no

Remainder(waitEstimate/reservation) = ? 1/4*0 + 1/4*0 + 2/4*(-1/2*log2(1/2) - 1/2*log2(1/2)) = 0.5

Remainder(FriSat/waitEstimate)= ? 1/2*0 +1/2*0 = 0

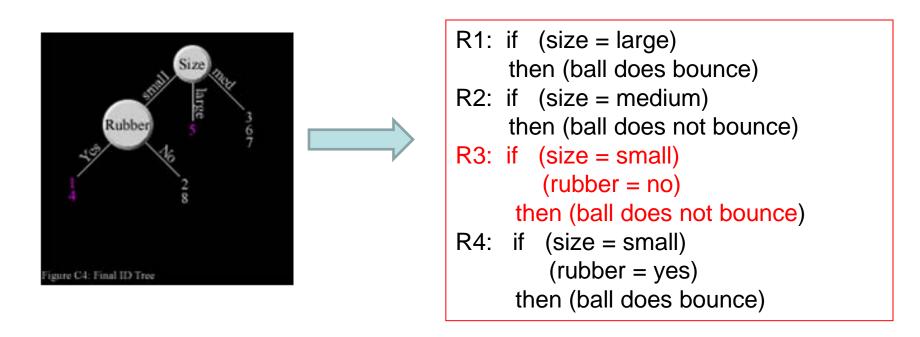
(3). Work in class

Please draw a decision tree for p12 ad p13 the running results of the decision tree!

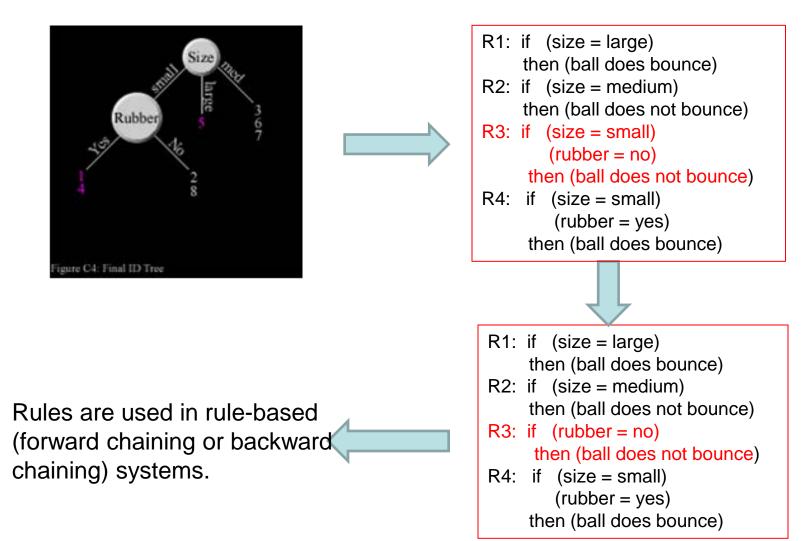


ID Trees to Rules

Once an ID tree is constructed successfully, it can be used to generate a rule-set, which will serve to perform the necessary classifications of the ID tree. This is done by creating a single rule for each path from the root to a leaf in the ID tree.



Refined Rules



Eliminating unnecessary rule conditions

R3: if (size = small) (rubber = no) then (ball does not bounce)

Ball	Size	Color	Weight	Rubber?	Result (Bounces?)				
1	Small	green	Light	yes	yes				
2	Small	blue	Medium	no	no				
3	Medium	red	Medium	no	no				
-4	Small	red	Medium	yes	yes				
- 5	Large	green	Heavy	yes	yes				
- 6	Medium	blue	Heavy	yes	no				
7	Medium	green	Heavy	yes	no				
8	Small	red	Light	no	no				
Figure C1: Identification Tree Training Data									

Looking at the probability with event A = (size=small) and event B = (ball does not bounce)

Calculate:

What does

this mean?

P(B|A) = (3 non rubber balls do not bounce / 8 total) = 0.375P(B) = (3 non rubber balls do not bounce / 8 total) = 0.375

P(B|A) = P(B) therefore B is independent of A

A and B \rightarrow no relation, no dependency

R3: if (size = small) (rubber = no) then (ball does not bounce)

Eliminating unnecessary rule conditions

R3: if (size = small) (rubber = no) then (ball does not bounce)

Ball	Size	Color	Weight	Rubber?	Result (Bounces?)
1	Small	green	Light	yes	yes
2	Small	blue	Medium	no	ne
3	Medium	red	Medium	no	no
4	Small	red	Medium	yes	yes
5	Large	green	Heavy	yes	yes
6	Medium	blue	Heavy	yes	no
7	Medium	green	Heavy	yes	no
8	Small	red	Light	no	no
Figure (1: Identificati	ion Tree Trair	ning Data		

Looking at the probability with event A = (rubber=no) and event B = (ball does not bounce)

Calculate:

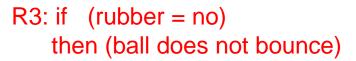
What does

this mean?

P(B|A) = (3 balls do not bounce / 8 total) = 3/8P(B) = (5 balls do not bounce / 8 total) = 5/8

 $P(B|A) \neq P(B)$ therefore A and B are not independent

No change on R3



Home Work

Read the following site:

http://ai-depot.com/Tutorial/RuleBased.html