L6: Reasoning logically

- rule-based systems
(Applications of Forward- and Backward-chaining algorithms)

Review of inference mechanisms

Rule-based system and its implementation in Java

Seven inference rules for propositional Logic

* R(1) Modus Ponens a=B, o
p

e R(2) And-Elimination =~ %1/ %2 /A---/A Gy
Qi

* R(3) And-Introduction Oy, O, .-y Oy
Oy A Oy A O,

* R(4) Or-Introduction Q;

oyVo,V..Va

n

* R(5) Double-Negation Elimination ——a
p

« R(6) Unit Resolution _*" B, — B

a

aVvp—=Bvy

aVvy

« R(7) Logic connectives:

The three new inference rules

* R (8) Universal Elimination: For any sentence a., variable v, and ground ter

YV o Ground term is a
term that contains
SUBST({v/g}, Q) no variables.
e.g., V x Likes(x, lceCream), we can use the substitute {x/Rose} and y Murderer

infer Like(Rose, IceCream).
* R (9) Existential Elimination: For any sentence a, variable v, and constant : x

k that does not appear elsewhere in the knowledge base:

dv o
SUBST({v/k}, QL)

e. g., 7x Kill(y, Victim), we can infer Kill(Murderer, Victim), as long as Murderer
does not appear elsewhere in the knowledge base.
* R (10) Existential Introduction: For any sentence o, variable v that does not occur
in o, and ground term g that does occur in o

e. g., from Likes(Rose, IceCream) a

we can infer 7x Likes(x, lceCream). 3 V SUBST({gh}, Q)

Example of proof (G187)

Bob is a buffalo | 1. Buffalo(Bob) --f1
Pat is a pig | 2. Pig(Pat) --f2
Buffaloes run faster than pigs | 3. V X, y Buffalo(x) A Pig(y) = Faster(x,y) --rl
To proof:

Bob runs faster than Pat

Apply R(3) to f1 And 2 | 4. Buffalo(Bob) 4 Pig(Pat) --f3
(And-Introduction)

Apply R(8) to r1 {x/Bob, y/Pat} | 5. Buffalo(Bob) 4 Pig(Pat) = Faster(Bob,Pat) --f4
(Universal-Elimination)

Apply R(1) to f3 And f4 | 6. Faster(Bob,Pat) --f5

(Inplication-Elimination)

Search with primitive (A ®) inference rules

Operators are inference rules
States are sets of sentences

Goal test checks state to see if it contains query (& &) sentence

R(1) to R(10) are common inference pattern

123 Problem: branching factors are huge, esp. for R(8)
| pepyRE 0L & Idea: find a substitution that makes the ruje premise
1234 match some known facts.
Apply R(8) to 3
1 2‘3 45
Apply R(1) to 4 & 5

123456

A Reasoning System

A query, q

—

Matching

Fire a Rule I

A new conclusion

A new fact, p

Inference Engine

Select a Rule |

w

-

Unify

Unification function, Unify, is to take two atomic sentences p and g and return a
substitution that would make p and g look the same.

A substitute A unifies atomic sentencespand qif pA=q 4

For example,
P g A
Knows(John, x) | Knows(John, Jane) | {x/Jane}
Knows(John, X) | Knows(y, OJ) | {y/John, x/OJ}

Knows(John, x) | Knows(y, Mother(y)) | {y/John, x/Mother(John)}

Premise RijiZ

String matching: stringl = string2

e.g. “rose” = “rose” } == |f stringl.equals(string2)
“I am Rose” = “l am Rose”
“l am ?x” =*l am Rose”
“I am ?x” = “?y am Rose” } ?

| =%y
am =am
?X = Rose
e.g. ?xis ?y and ?x e.g. husband(father(?x), Mike)
Rose is rose and ?y husband(father(John), Mike)
?X = Rose ?x = John
7y =rose

X=7?y

public boolean matching(String stringl, String string?) |
/ Swstem.out.print Infstringl);
A7 Swstem.out.print Infstring?);

A B LTI T
if (stringl.equalsistring?))
return true;

AER =L E
=t1 = new Stringlokenizeristringl);
=t2 = new Stringlokenizeristring?);

A BIERT o 5By
if (stl.countTokens) 1= st2.countTokens())
return false;

A SERIE]L
for Cint i = 05 i < stl.countTokens():) {
if (ltokerMatchina(stl.nextToken(), st2.nextToken())) |
A el B A e N S S i DY e

return ftalse;

1
/ miBET 0K, 7daRkIh

return true;

boolean tokerMatching(String tokenl, Strins token?) |
Swstem. out .print In{tokenl+ <->"+token?);

if (tokenl.equals(tokenZ))

return true;
if (var(tokenl) &% lvar(tokenZ))

return varMatchinz(tokenl, token2);
if (lvar(tokenl) &% var(token2))

return varMatchinz(token?, tokenl);
return false;

Forward chaining |

If we start with the sentences in the knowledge base and generate new
conclusions that in turn can allow more inferences to be made. This is

called forward chaining. TELL
when a new fact p is added (told) to the KB

for each rule such that p unifies with a premise

If the other premises are known

then add the conclusion to the KB and continue chaining.

"FLOEENFRSINI=EETIC, BEICRLEIHREKRDD

"EENSRE—FLT IL—ILIZE->THEREREB5

-F-ICEon-#HREREX. FEERLCEIICROHERBIZFHETES

- TAIZBTHABIEWVNSIFEEL, IBALIXCIEWLWSIRAIM S, TAIXCTHSI1E
LOOfEREECH R A K

» Forward chaining is usually used when a new fact is added to the database and

we want to generate its consequences.

e |t is data driven. 10

Forward chaining example

Let us add facts r1, r2, r3, f1, f2, f3 in turn into KB.

rl. Buffalo(x) A Pig(y) = Faster(x,y)

r2. Pig(y) 4 Slug(z) = Faster(y,z) vV XY,Z

r3. Faster(x,y) AFaster(y,z) = Faster(x,z)

f1. Buffalo(Bob) [r1-c1, Bob/x, yes]

f2. Pig(Pat) [r1-c2, Patly, yes] - f4. Faster(Bob, Pat)
f3. Slug(Steve) [r2-c2, Steve/z, yes]

[r2, 2, £3, Patly, Steve/z, yes] - f5. Faster(Pat, Steve)
[r3, T4, 5, Bob/x, Patly, Steve/z, yes] = 16. Faster(Bob, Steve)

Rules defined in the rule base file: CarShop

rule "CarRulel"

if "?xis inexpensive"
then "?x is made in Japan"
rule "CarRule2"

if "?xis small"

then "?x is made in Japan"
rule "CarRule3"

if "?xis expensive"
then "?x is a foreign car"
rule "CarRule4"

if "?x is big"

"?x needs a lot of gas”
then "?xis a foreign car"
rule "CarRule5"
if "?xis made in Japan"”

"?x has Toyota's logo”
then "?x is a Toyota"
rule "CarRule6"
if "?xis made in Japan"”
"?x is a popular car"
then "?x is a Toyota"

rule "CarRule7"

if "?xis made in Japan"
"?x has Honda's logo"

then "?x is a Honda"

rule "CarRule8"

if "?xis made in Japan"
"?x has a VTEC engine"

then "?x is a Honda"

rule "CarRule9”

if "?xis aToyota"
"?x has several seats"
"?X is a wagon"

then "?x is a Carolla Wagon"

rule "CarRulel0"

if "?xis a Toyota"
"?x has several seats"
"?x is a hybrid car"

then "?x is a Prius"

rule "CarRulel1"

if "?x is a Honda"
"?X is stylish”
"?x has several color models"
"?x has several seats"
"?X is a wagon"

then "?x is an Accord Wagon"

rule "CarRulel2"
if "?xis aHonda"

"?x has an aluminium body"

"?x has only 2 seats"
then "?x is a NSX"
rule "CarRulel3"
if "?xis aforeign car"

"?X is a sports car"”

"?X is stylish”

"?x has several color models”

"?X has a big engine”
then "?x is a Lamborghini Countach"
rule "CarRule14"
if "?xis aforeign car"

"?X is a sports car"”

"?x is red"

"?X has a big engine”
then "?x is a Ferrari F50"
rule "CarRulel5"
if "?xis aforeign car"

"?X is a good face"
then "?x is a Jaguar XJ8"

Forward Chaining-os

rules

my-car 15 Inexpensive

— R

my-car has a VTEC engine

rule "CarRulel"

f Wipe, 2. - |

1 ’X 15 InexXpensive
then "7x% 15 made mn Japan"

Eh

my-car 1s made in Japan

f

my-car 1s stylish
my-car has several color models
my-car has several seats

—

mry=car 15 a Wagon

1850 if

my-car 1s a Honda

then
B N

my-car 15 an Accord Wagon

\. J
4 N
rule "CarRuleg"
if "7x% 15 made in Japan"
"?x has a VTEC engine”
then "7x% 15 a Honda"

"CarRulell”

"?x 15 a Honda"

"7x 15 stylish”

"7?x has several color models”

"?x has several seats"

"?x 15 a wagon"

"7x 15 an Accord Wagon"

_
RKTBAIN—IDHDESZURT

o

Backward chaining |

It is to start with something we want to prove, find implication sentences
that would allow us to conclude it, and them attempt to establish their
premises in turn. This is called backward chaining.

ASK

when a query ¢ is asked

It @ matching fact g’ is known, return the unifier
for each rule whose consequent ¢’ match g

attempt to prove each premise of the rule by backward chaining *

-SEZ2ont=-Gah. IREDT7TH—av&EGIZBELNTRYII DM E
IMZERRIEL TLHER
cTd—ILIBRA—,T B . d—ILABEDESIZHNITHIGKTDH

14

Backward chaining example

Bob is a buffalo | 1. Buffalo(Bob)
Pat is a pig | 2. Pig(Pat)

Buffaloes run faster than pigs | 3. V X, y Buffalo(x) A Pig(y) = Faster(x,y) --rl

--f1
--f2

Goal: to prove ————

Faster(Bob, Pat)
|

Faster(x, y)

rl

Buffalo(x) 4 Pig(y)
/R@)_/A\M\Eﬁm@tion
R(8) — universal Elimination Buffalo(x) Pig(y)
{x/Bob} {y/Pat}
Buffalo(Bob) Pig(Pat)
i o

R(8) — universal Elinfina{iey

15

Rules defined in the rule base file: CarShop

rule "CarRulel"

if "?xis inexpensive"
then "?x is made in Japan"
rule "CarRule2"

if "?xis small"

then "?x is made in Japan"
rule "CarRule3"

if "?xis expensive"
then "?x is a foreign car"
rule "CarRule4"

if "?x is big"

"?x needs a lot of gas”
then "?xis a foreign car"
rule "CarRule5"
if "?xis made in Japan"”

"?x has Toyota's logo”
then "?x is a Toyota"
rule "CarRule6"
if "?xis made in Japan"”
"?x is a popular car"
then "?x is a Toyota"

rule "CarRule7"

if "?xis made in Japan"
"?x has Honda's logo"

then "?x is a Honda"

rule "CarRule8"

if "?xis made in Japan"
"?x has a VTEC engine"

then "?x is a Honda"

rule "CarRule9”

if "?xis aToyota"
"?x has several seats"
"?X is a wagon"

then "?x is a Carolla Wagon"

rule "CarRulel0"

if "?xis a Toyota"
"?x has several seats"
"?x is a hybrid car"

then "?x is a Prius"

rule "CarRulel1"

if "?x is a Honda"
"?X is stylish”
"?x has several color models"
"?x has several seats"
"?X is a wagon"

then "?x is an Accord Wagon"

rule "CarRulel2"
if "?xis aHonda"

"?x has an aluminium body"

"?x has only 2 seats"
then "?x is a NSX"
rule "CarRulel3"
if "?xis aforeign car"

"?X is a sports car"”

"?X is stylish”

"?x has several color models”

"?X has a big engine”
then "?x is a Lamborghini Countach"
rule "CarRule14"
if "?xis aforeign car"

"?X is a sports car"”

"?x is red"

"?X has a big engine”
then "?x is a Ferrari F50"
rule "CarRulel5"
if "?xis aforeign car"

"?X is a good face"
then "?x is a Jaguar XJ8"

Backward Chaining-os

rules
o3 i - his-car=7x3 (.. . :
FXD 1S INEXPENsIve his-car="x2 his-car 1s stylish
4 his-car="x1 1]_'Il":--EHI has several color models
7x3 is inexpensive his-car="x 1]_'Il":--CHI ha& several seats
his-car is a wagon
L| _ J
)) ;\ his-car=7x1
rule "CarRulel” ~\
if "?x3 is inexpensive" his-car has a VTEC engine 7%1 is stvlish
then "7x3 1s made in Japan" : q 7x1 has several color models
his-car=7%2 .
’x1 has several seats
(}X_z llﬂ":n a T\-'TTEC Eﬂgi_'[l'ﬂ ﬂ:{l iq_, a \\ragﬂn
, , . J
7x2 1s made mn Japan 1‘ A
Mx1="x2 rule "CarRule&" rule "CarRulell"
7x=7x1 if "?x2 is made in Japan" if "?x11s a Honda"
"7%2 has a VTEC engine” “7x1 1s stylish”
then "2x2 is a Honda" "7%x1 has several color models™
"7x1 has several seats"

¥ = L] = L]

'x1="x2 ’ "7x1 15 a wagon'

Tx=7x1

"?x1 1s an Accord Wagon")

7r : IR 7x1 1s a Honda -« \then

I | 2 S -
#% . WM 7x 15 an Accord Wagon S

A Rule-base System Architecture

class
RuleBaseSystem{}

class RuleBase{}

class WorkingMemory{}

class Rule{}

Inference Engine

Fire a Rule | Select a Rule |

class Matcher{}

18

Rule-base System Examples

rule
if
then

"CarRulel"
"?X IS inexpensive"
"?Xx 1S made in Japan”

antecedents

RuleBazel) {
il

WM

WIT .
lire

WM

Wi
Wi
Wi
rul
loadRules(f i leName) ;

blass WorkingMemory {
Arravlist<String> assertions;

rule "CarRule4"”

. s " Work ineMemory () {

If : X Is blg i assertions = new Arravlist<String>();
. "?X needs a lot of gas J

then "?Xx Is a foreign car"

\L consequent }

clazs Rule |
String name;

eName = "CarShop.data”™;

- hew WorklﬁgMemory() Ahrravl ist<String> antecedents:

addbzsertion my-car is inexpensive’); Strimz consequent:

addéssert ion(my-car has a VTEC engine”);

caddbssert ion(” my-car is stylish™); Fule(String theMame, Arravlist<String® thebrtecedents,
addissert ionl” my-car has several color moce | < string theConsequent) {

addissert ionl” my-car has several seats B this.name = theName;

this.antecedents = thelntecedents;

addﬂssert|on(My-Car is a wag
this.conzequent = theConsequent ;

es = new Arravlist<Rulex();

public void addAssertion(String theAssertion) {
System. out. printIn(“ADD: “+theAssertion) ; 19
assertions. addElement (theAssertion) ;

loadRules method

private void loadRules(String theFileName) {
?tri?g | ire;
ry

int token;
f = new FileReader("src/tes/” + theFileMame);

=t = new StreamTokenizer(f);
while ({token = st.nextToken()) != StreamTokenizer.TT_EOF) |
switch (token) |
case streamlokenizer. TT_WORD:
String name = null;
Arravlist<String> antecedents = nrull;
Strinz consequent = null;
if ("rule”.equalsist.sval)) {
if (st.rextToken() == ") |
name = st.sval;
st.next Token();

if ("if" . equalsist.oval)) |
antecedents = new Arravlist<String>();

st.next Token();

while (1"then”.equalsist.svall) {
antecedents.addist . sval);
=t.next Token();

if ("then”.equals(st.sval)) |
=t . rext Token();
conseguent = st.sval;

}

rules. add(new Rulelrame, antecedents, consequent));

breal;

default:
Swetem.out.print In(token);

breal;

}

1 catch (Exception e) |
Swstem.out.print Inle);

20

Rule-base System Examples (1)

public class RuleBaseSystem {
static RuleBase rb;
public static void main(String args[]){
rb = new RuleBase();
rb.forwardChain();

Determine
possible rules

to Fire

Conflict
Fule o Resoalution |
Fire Strategy

gre=ciiiesd by e,

21

public void forwardChain() |
boolean newdssert iorCreated;

[T 3 R AN A E TS,
T HLLTY =y 2 UAERE NN E ShEIRET ST

newbssert ionCreated = false;
AL DB L —T
for Cint i =05 i € rules.size(); i++) {
A= ERRY T
Fule aRule = rules.zetii);
ARV mENL-LhFETE
System.out.print Inl"apply rule:™ + aRule.getName());
L —ILOEN EFRT
ArrayList<String> antecedents = aRule.zetintecedents(];
A — I DR T
String conseauent = aRule,getConsequent ();
AR T 1 I BROENR
Arravlist<HashMap<Gtring, String>> bindings = wn
.matchinzdssert ions{antecedents);

if (hindings != rull) |
for Cint J = 0; j < bindines.size(); j++) { .
AEFEA AR DT 3 BRI T OERESTII0ND)
String rewfssertion = instantiate((String) consequent,
. bindings.get(j));

AT —F G AT) =23 ERNT

it Clum.contains(rewdssertion)) {
System.out.print Ini "Success: ” + newdssertion);
A T BRI SEND
w. adddssert ion{newdssert ion);
newbssert ionCreated = true;

!

Swetem.out.print Inl Working Memory™ + wm);
1 while (rewissert ionCreated); .
Svetem.out .print In Mo rule produces a new assertion”);

matchable() Method

public Arravlist<HaskMap<String, String>> matchinglssert ions(
Arravl ist<String> thelntecedents) |
Arravl ist<HashMap<String, Strings> bindings = new Arravlist<HashMap<Strirg, Strings>();
return matchable(thebrtecedents, 0, bindings);

!

private Arravlist<HashMap<String, String:» matchablel
Arravlist<5tring> thelntecedents, int n,
. Arrayl ist<HashMap<String, String>> bindines) {
A4 BB R T
if (n == thebntecedents.size()) |
return bindings;

1
/108
else if (n==10) {
boolean success = false;
A S TSRO —7
for (int i =0; i < assertions.sizel); i++) {
fISA T s ERERFT S aT e T
HashMap<Strineg, String> binding = new HashMar<String, Strineg>();
e F T ILEIY
if ({new Matcher(}).matching(thefntecedents, get(n),
. assertions,get(i), binding)) {
AT DR E vy 2Ty TI5END
bindings.add(binding);

success = 1rue;

}

if (success) |

return matchable(thebntecedents, n + 1, bindings);
}else {
| return nul |;

23

A2 DOBLIE

else
boolean success = false;
AN T R R T v ATy T
Arraylist<HashMap<String, String>> newBirdines = new Arraylist<HashMap<String, String>>();
A BENI A T N ERROET L —T
for Cint i = 0; i < bindings.size(); i++) {
At o T DRI R)L —7
for (int J = 0; j < assertions.sizel); j++) {
AT F oG IIERTh
if ((rew Matcher()) . matching(thefntecedents. get(n),
. assertions.get(i), bindings.get(j))) {
AN T ANEERE v v L A TIILEND
rewBindings.add(bindings. get (i));
} success = true;
I
if (success) |
return matchable(thefntecedents, n + 1, newBindings);
I else |
} return rul l;
I

24

BT [& & O % 350

[FLHIZ

J—ZMIZH TDE R (EhN TN DB
EFUTFOERDHS

e Assertion MO TULVSENEH(my-caris a wagonZ)
e Antecedents: Bl (JL—ILD I, IFDERS)
e Consequent: BEF(L—ILhLiGEoN5EER, THENDER7)

e Bindings EE(FNBEAIE-BREDERETHEVDITD)

HIEEHMDERET

public void forwardChain() {

boolean newAssertionCreated;

/] FLWTH—2 30 BNERSNGESETHRITS.
do{

CarRulel
/| HLWT =2 a0 BNERSNT-NEIDNERTFETHIE

newAssertionCreated = false;
/] W—ILDEIZFIL—T "?x is inexpensive"
for (inti=0;i<rules.size(); i++) {
[/ IW—ILERYET
Rule aRule = rules.get(i);
/] BRYEHENFZIL—ILD R
System.out.printIn("apply rule:" + aRule.getName());
/[V=L ORI E RS "?x is made in Japan'

ArrayList<String> antecedents = aRule.getAntecedents();
/| =L D% ERE /

String consequent = aRule.getConsequent(); ,
AT A5 = ?X=my-car
/| N T2 T BROBE Y

ArrayList<HashMap<String, String>> bindings = wm /

.matchingAssertions(antecedents);

BRI S HER DB E

my-car is made in Japan

if (bindings !'=null) {
for (int j = 0; j < bindings.size(); j++) {
/| BBEEAVREID DT —2a(BBUITNAO T4 EHRE L TEH D)

String newAssertion = instantiate((String) consequent,bindings.get(j));
/] D—F2 T AE)—IZEIT LTI

if ('wm.contains(newAssertion)) {

System.out.printIn("Success: " + newAssertion);
/] F> TS NGB
wm.addAssertion(newAssertion);
newAssertionCreated = true;

}

} R
} —O20 AF)—NH
}
System.out.printIn("Working Memory" + wm); my-car is inexpensive
} my-car has a VTEC engine
[[ETDIIL—LERTI DTN EMEN6, 1D RET :
while (newAssertionCreated); my-car is made in Japan

System.out.printIin("No rule produces a new assertion");

}

matchingAssertions Ak

5I3E. TDIL—ILDFIME T, L—ILICTEFEN DR AR ZT RN
EREUDITLDZERT

public ArrayList<HashMap<String, String>> matchingAssertions(
ArrayList<String> theAntecedents) {
[/EREMBEEV DT HashMapZFBREFT B A

ArrayList<HashMap<String, String>> bindings = new
ArrayList<HashMap<String, String>>();

return matchable(theAntecedents, O, bindings);

Matchable AWk

/] BT DRI ITHEYIR T

e cur bmiings: JL—IL DRI DRI > TOBABERY IR
) ' LTCIYF U ETWNNAT AT ERERT
// 128

else if (n == 0) {

boolean success = false;
/] D> TWBEEDEIZFIL—T
for (inti = 0; i < assertions.size(); i++) {
[N T4 T ERERFT B/ \vayT
HashMap<String, String> binding = new HashMap<String, String>();
/] RYFT RN
if ((new Matcher()).matching(theAntecedents.get(n),assertions.get(i), binding)) {
[INA T 22T tERE NV 2Ty T (TN
bindings.add(binding);
success = true;
}
}

if (success) {

return matchable(theAntecedents, n + 1, bindings);
} else {

return null;

}

1MEEDOTYFY

o MatcherZ7<5 XM matching *Y/) v TENEE &R
HEORBREXITW. NNAUTAVTERET/S
e {5 :CarRule8

my-car is inexpensive

?x is made in Japan

D

my-car has a VTEC engine

my-car is made in Japan
(CarRulel TThHh Mo =%0:) IYFUH R !

?X = my-car

Matchable AWk

else {
boolean success = false;
/| INAT AT ERERET S/ \vayT
ArrayList<HashMap<String, String>> newBindings = new ArrayList<HashMap<String, String>>();
/| BoNfznN\A T AT EBROBEFIL—T
for (inti=0; i< bindings.size(); i++) {
/] OS> TWBEBDEZTIL—T
for (int j = 0; j < assertions.size(); j++) {
/] RIFTIZHTh
if ((new Matcher()).matching(theAntecedents.get(n),assertions.get(j), bindings.get(i))) {
/] N T2 ERE/ Ny 2T ITEM
newBindings.add(bindings.get(i));
success = true;

) RINERHLEEIE. Ty TFY
; FIZBER DN T4 ERIC
if (success) { 551."]_6_%)

return matchable(theAntecedents, n + 1, newBindings);
}else {
return null;

2{@ B LIED<yF5

+ 1{EE ORI EMBD IR E THI-?x=my-car
EVINAUTAVTIRRBFAL TR YT
e

my-car is inexpensive

my-car has a VTEC engine

?x has a VTEC engine

D

my-car is made in Japan

(CarRulel Th M o7-0:#)

?X = my-car

D

NIFTEEOYYFUTEREFE
MNECHELNDTIYFUT R

rule "CarRulel"
if "?X Is inexpensive"
then "?x is made in Japan"

Rule "CarRule2"

if "?x is small”

then "?x is made in Japan"
rule "CarRule3"

If "?X IS expensive"
then "?x is a foreign car"
rule "CarRule4"

if "?x is big"

"?x needs a lot of gas”
then "?x is a foreign car"
Rule "CarRule5"

If "?x is made in Japan"
"?x has Toyota's logo™

then "?x is a Toyota"

rule "CarRule6"

if "?x is made in Japan"

"?x is a popular car"

Then "?x is a Toyota"

rule
if

then

rule
if

then
rule
if

then
rule
if

then

rule
if

then

"CarRule7"

"?x is made in Japan"
"?x has Honda's logo"
"?x is a Honda"

"CarRule8"

"?x is made in Japan"
"?x has a VTEC engine"
"?x is a Honda"

"CarRule9"
"?x is a Toyota"
"?Xx has several seats"
"?X is a wagon"
"?x is a Carolla Wagon"

"CarRulel10"

"?x is a Toyota"

"?X has several seats"
"?x is a hybrid car"
"?xis a Prius"

"CarRulel11"
"?x 1s a Honda"
"?x is stylish"
"?x has several color models"
"?X has several seats"
"?x is a wagon"
"?x is an Accord Wagon™

rule
if
then

rule
if

then

rule
if

then

rule
if

then

"CarRulel12"

"?x is a Honda"

"?x has an aluminium body"
"?x has only 2 seats"

"?x is a NSX"

"CarRulel13"
"?x is a foreign car"
"?X is a sports car"
"?x is stylish"
"?x has several color models"
"?x has a big engine"
"?x is a Lamborghini Countach™

"CarRule14"

"?x is a foreign car"
"?X is a sports car"
"?x is red"

"?x has a big engine”
"?x is a Ferrari F50"

"CarRulel5"

"?x is a foreign car"
"?x is a good face"
"?x is a Jaguar XJ8"

34

Facts in Working Memory (WM):

his-car IS Inexpensive

his-car has a VTEC engine
his-car is stylish

his-car has several color models
his-car has several seats

his-car Is a wagon

Output:

% java RuleBaseSystem
% java RuleBaseSystem

ADD:my-car is inexpensive Initial facts in

ADD:my-car has a VTEC engine the Working
ADD:my-car is stylish

ADD:my-car has several color models . memory
ADD:my-car has several seats
ADD:my-car is a wagon /
CarRulel [?x is inexpensive]->?x is made in Japan

CarRule2 [?x is small]->?x is made in Japan

CarRule3 [?x is expensive]->?x is a foreign car

CarRule4 [?x is big, ?x needs a lot of gas]->?x is a foreign car

CarRule5 [?x is made in Japan, ?x has Toyota's logo]->?x is a Toyota

CarRule6 [?x is made in Japan, ?x is a popular car]->?x is a Toyota

CarRule7 [?x is made in Japan, ?x has Honda's logo]->?x is a Honda

CarRule8 [?x is made in Japan, ?x has a VTEC engine]->?x is a Honda

CarRule9 [?x is a Toyota, ?x has several seats, ?x is a wagon]->?x is a Carolla Wagon

CarRulel0 [?x is a Toyota, ?x has several seats, ?x is a hybrid car]->?x is a Prius

CarRulell [?x is a Honda, ?x is stylish, ?x has several color models, ?x has several seats, ?X is a wagon]->?x is an Accord Wagon
CarRulel2 [?x is a Honda, ?x has an aluminium body, ?x has only 2 seats]->?x is a NSX

CarRulel3 [?x is a foreign car, ?x is a sports car, ?x is stylish, ?x has several color models, ?x has a big engine]->?x is a Lamborghini
Countach

CarRulel4 [?x is a foreign car, ?x is a sports car, ?x is red, ?x has a big engine]->?x is a Ferrari F50

CarRulel5 [?x is a foreign car, ?x is a good face]->?x is a Jaguar XJ8

apply rule:CarRulel

Success: my-car is made in Japan
ADD:my-car is made in Japan — A new fa}Ct added to the
apply rule:CarRule2 working memory

apply rule:CarRule3

J

apply rule:CarRule4 _rUIe ?arRu_lel . _ _
apply rule:CarRule6 then "?x is made in Japan” 36

apply rule:CarRule7

apply rule:CarRule8
Success: my-car is a Honda
ADD:my-car is a Honda

[my-car is made in Japan]

apply rule:CarRule9

rule "CarRule8"
apply rule:CarRulel0 : o "
apply rule:CarRulell if ZX IhS mati(/é_r Ir; (J:apan_)
Success: my-car is an Accord Wagon " m.)x nas aH o engine
ADD:my-car is an Accord Wagon then #X 1s a Honga
apply rule:CarRulel2
apply rule:CarRule13 A new fact added to _ v
apply rule:CarRule14 the working memory [my-car is ajHonda]

apply rule:CarRulel5
Working Memory[my-car is inexpensive, my-car has a VTEC engine, my-car is stylish, my-car has several colq
models, my-car has several seats, my-car is a wagon, my-car is made in Japan, my-car is a Honda, my-car is an
Accord Wagon]

apply rule:CarRulel

-

apply rule:CarRule2

apply rule:CarRule3 rule “CarRulell" \
apply rule:CarRule4 if "2x is a Honda"

apply rule:CarRule5 "?X 1s stylish*

"?x has several color models"

"?x has several seats"

"?x is a wagon"
apply rule:CarRule9 hhen "?x is an Accord Wagon")
apply rule:CarRulel0

apply rule:CarRulel1l 1

apply rule:CarRule12 A new fact added to

apply rule:CarRulel3 the working memory [my-car is an Accord Wagon]
apply rule:CarRulel4
apply rule:CarRulel5
Working Memory[my-car is inexpensive, my-car has a VTEC engine, my-car is stylish, my-car has several color
models, my-car has several seats, my-car is a wagon, my-car is made in Japan, my-car is a Honda, my-car is an
Accord Wagon]

No rule produces a new assertion

apply rule:CarRule6
apply rule:CarRule7
apply rule:CarRule8

37

Forward Chalnlnq

my-car 15 Inexpensive

my-car has a VTEC EI]Elll-E

— R

111*»; car 1s stylish
my-car has several color models
my-car has several seats

rule "CarRulel" ‘ | [y-caris a wagon
: Wipe, 2. - |
if % Is inexpensive r ~
then "7% 1s made mn Japan" rule "CarRuleg"
if "7x% 15 made in Japan"

Eh

then "7x 1s a Honda"

my-car 1s made in Japan

1850 if

my-car 1s a Honda

my-car 15 an Accord Wagon

"?x has a VTEC engine”

"CarRulell"
"?x 15 a Honda"
"7x 15 stylish”

"7?x has several color models”

"?x has several seats"

"X1saw agon"

"7x 15 an Accord Wagon"

then
B N

_
RKTDIN—IDBESZURT

Exermse Al programming

. Input program , and a rule-base file
understand them, run the program, and check the output.
2. Make some modifications to RuleBaseSystem.java
(data file name: Outruns.data, rules in the data file, and
writing the initial content (facts) in the working memory in a file, wm.txt)
so that the program can run for the following case.

Bob is a buffalo | 1.
Pat is a pig | 2.
Buffaloes outrun pigs | 3.

Apply (3)to 1 And 2 | 4. Buffalo(Bob) 4 Pig(Pat)

Apply (8) to 3 {x/Bob, y/Pat} | 5. Buffalo(Bob) A Pig(Pat)

Apply (1) to 4 And 5 6. 39

“ﬁ Bootstrap FuleBazesystem

bephocelerator(tm) 1.2.010 for Java CJOK 1.2), %86 werszion.
Copwright () 1997-1999 Inprise Corporation. Al Rights Reserved.
AOD:Buffalol Bob)

A0D:Figl Pat)

F3 L2, Y]-»TH & 7Y

3 [Buffalol 2), Pigl ?Y)]-Fasterl 7% , 7Y)

apply rule:r3

apply rule:ts

Success: Faster(Bob , Pat)

A0D:Faster(Bob , Pat)

Warking Memorv[Buffalol Beb), Pigl Pat), Faster(Bob , Pat)]
apply rule:rd

apply rule:rt3

Warking Memorv[Buffalol Beb), Pigl(Pat), Faster(Bob , Pat)]

Mo rule produces a new assertion

TS = g UEERTSIZ0T Ctrel+0 ZRL TS
g

Home work

Write a report includes

- Front page (name, id)

- About the report
- exercise problem statement
- Where you make effort

- Source program

- Execution screen shot

The submission deadline: 2015/11/05

41

	�L6: Reasoning logically� - rule-based systems� (Applications of Forward- and Backward-chaining algorithms)
	Seven inference rules for propositional Logic
	The three new inference rules
	Example of proof (証明)
	Search with primitive (基本の) inference rules
	スライド番号 6
	Unify
	スライド番号 8
	スライド番号 9
	Forward chaining
	Forward chaining example
	スライド番号 12
	Forward Chaining-他の例
	Backward chaining
	Backward chaining example
	スライド番号 16
	Backward Chaining-他の例
	A Rule-base System Architecture
	Rule-base System Examples
	スライド番号 20
	Rule-base System Examples (1)
	スライド番号 22
	matchable() Method
	スライド番号 24
	前向き推論の解説
	はじめに
	前向き推論の途中まで
	前向き推論の続き
	matchingAssertionsメソッド
	Matchableメソッド
	１個目のマッチング
	Matchableメソッド
	２個目以降のマッチング
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	Forward Chaining
	Exercise – AI programming�1. Input program RuleBaseSystem.java, and a rule-base file CarShop.txt � understand them, run the program, and check the output. �2. Make some modifications to RuleBaseSystem.java � (data file name: Outruns.data, rules in the data file, and � writing the initial content (facts) in the working memory in a file, wm.txt)� so that the program can run for the following case.
	スライド番号 40
	スライド番号 41

