

L6: Reasoning logically
 - rule-based systems
 (Applications of Forward- and Backward-chaining algorithms)

 Review of inference mechanisms
 Rule-based system and its implementation in Java

2

Seven inference rules for propositional Logic

• R(1) Modus Ponens

• R(2) And-Elimination

• R(3) And-Introduction

• R(4) Or-Introduction

• R(5) Double-Negation Elimination

• R(6) Unit Resolution

• R(7) Logic connectives:

β
α ⇒ β, α

αi

α1 ∧ α2 ∧…∧ αn

α1 ∧ α2 ∧…∧ αn
α1, α2, …, αn

α1 ∨ α2 ∨ … ∨ αn
 αi

β
¬ ¬ α

α
 α ∨ β, ¬ β

α ∨ γ
 α ∨ β, ¬ β ∨ γ

3

The three new inference rules

• R (8) Universal Elimination: For any sentence α, variable v, and ground term g:

 e. g., ∀ x Likes(x, IceCream), we can use the substitute {x/Rose} and

 infer Like(Rose, IceCream).

• R (9) Existential Elimination: For any sentence α, variable v, and constant symbol

 k that does not appear elsewhere in the knowledge base:

 e. g., ∃ x Kill(y, Victim), we can infer Kill(Murderer, Victim), as long as Murderer

 does not appear elsewhere in the knowledge base.

• R (10) Existential Introduction: For any sentence α, variable v that does not occur

 in α, and ground term g that does occur in α:

 e. g., from Likes(Rose, IceCream)

 we can infer ∃ x Likes(x, IceCream).

SUBST({v/g}, α)

 ∀ v α Ground term is a
term that contains
no variables.

SUBST({v/k}, α)

 ∃ v α

∃ v SUBST({g/v}, α)

 α

key value
x rose

y Murderer

… …
x …

4

Example of proof (証明)

 Bob is a buffalo | 1. Buffalo(Bob) --f1

 Pat is a pig | 2. Pig(Pat) --f2

 Buffaloes run faster than pigs | 3. ∀ x, y Buffalo(x) ∧ Pig(y) ⇒ Faster(x,y) --r1

--

 To proof:

 Bob runs faster than Pat

 Apply R(3) to f1 And f2 | 4. Buffalo(Bob) ∧ Pig(Pat) --f3

 (And-Introduction)

 Apply R(8) to r1 {x/Bob, y/Pat} | 5. Buffalo(Bob) ∧ Pig(Pat) ⇒ Faster(Bob,Pat) --f4

 (Universal-Elimination)

 Apply R(1) to f3 And f4 | 6. Faster(Bob,Pat) --f5

 (Inplication-Elimination)

5

Search with primitive (基本の) inference rules

 Operators are inference rules

 States are sets of sentences

 Goal test checks state to see if it contains query (質問) sentence

 R(1) to R(10) are common inference pattern

 Problem: branching factors are huge, esp. for R(8)

 Idea: find a substitution that makes the rule premise

 match some known facts.

1 2 3

1 2 3 4

Apply R(3) to 1 &
2

1 2 3 4 5

Apply R(8) to 3

1 2 3 4 5 6

Apply R(1) to 4 & 5

Stored in working
memory

Stored in rule base

6

Rule Base Working Memory

Interaction with

Fire a Rule Select a Rule

Matching

Acting

Inference Engine

A Reasoning System

A query, q An answer, yes/no

A new fact, p
A new conclusion

7

Unify

Unification function, Unify, is to take two atomic sentences p and q and return a
substitution that would make p and q look the same.

A substitute λ unifies atomic sentences p and q if p λ =q λ

For example,

 p q λ

 Knows(John, x) | Knows(John, Jane) | {x/Jane}
 Knows(John, x) | Knows(y, OJ) | {y/John, x/OJ}
 Knows(John, x) | Knows(y, Mother(y)) | {y/John, x/Mother(John)}
 Premise 前提

8

String matching: string1 = string2

 e.g. “rose” = “rose” if string1.equals(string2)

 “I am Rose” = “I am Rose”

 “I am ?x” = “I am Rose”

 “I am ?x” = “?y am Rose”

 I = ?y

 am = am

 ?x = Rose

?

e.g. ?x is ?y and ?x
 Rose is rose and ?y

?x = Rose

?y = rose

?x = ?y

e.g. husband(father(?x), Mike)
 husband(father(John), Mike)

?x = John

9

10

Forward chaining

If we start with the sentences in the knowledge base and generate new
conclusions that in turn can allow more inferences to be made. This is
called forward chaining.

when a new fact p is added (told) to the KB

 for each rule such that p unifies with a premise

 if the other premises are known

 then add the conclusion to the KB and continue chaining.

• Forward chaining is usually used when a new fact is added to the database and

 we want to generate its consequences.

• It is data driven.

TELL

・新しい事実が観測されたときに、事実に最も合う推論を求める
・事実からスタートして、ルールによって推論結果を得る
・新たに得られた推論結果は、事実と同じように次の推論に利用できる
・ 「AはBである」という事実と、「BならばC」という規則から、「AはCである」と
 いう結論を導く推論方式

11

Forward chaining example

Let us add facts r1, r2, r3, f1, f2, f3 in turn into KB.

r1. Buffalo(x) ∧ Pig(y) ⇒ Faster(x,y)

r2. Pig(y) ∧ Slug(z) ⇒ Faster(y,z)

r3. Faster(x,y) ∧Faster(y,z) ⇒ Faster(x,z)

f1. Buffalo(Bob) [r1-c1, Bob/x, yes]

f2. Pig(Pat) [r1-c2, Pat/y, yes] f4. Faster(Bob, Pat)

f3. Slug(Steve) [r2-c2, Steve/z, yes]

[r2, f2, f3, Pat/y, Steve/z, yes] f5. Faster(Pat, Steve)

[r3, f4, f5, Bob/x, Pat/y, Steve/z, yes] f6. Faster(Bob, Steve)

∀ x, y, z

rule "CarRule1"
if "?x is inexpensive"
then "?x is made in Japan"
rule "CarRule2"
if "?x is small"
then "?x is made in Japan"
rule "CarRule3"
if "?x is expensive"
then "?x is a foreign car"
rule "CarRule4"
if "?x is big"
 "?x needs a lot of gas"
then "?x is a foreign car"
rule "CarRule5"
if "?x is made in Japan"

 "?x has Toyota's logo"
then "?x is a Toyota"
rule "CarRule6"
if "?x is made in Japan"
 "?x is a popular car"
then "?x is a Toyota"

rule "CarRule7"
if "?x is made in Japan"
 "?x has Honda's logo"
then "?x is a Honda"
rule "CarRule8"
if "?x is made in Japan"
 "?x has a VTEC engine"
then "?x is a Honda"
rule "CarRule9“
if "?x is a Toyota"
 "?x has several seats"
 "?x is a wagon"
then "?x is a Carolla Wagon"
rule "CarRule10"
if "?x is a Toyota"
 "?x has several seats"
 "?x is a hybrid car"
then "?x is a Prius"
rule "CarRule11"
if "?x is a Honda"
 "?x is stylish"
 "?x has several color models"
 "?x has several seats"
 "?x is a wagon"
then "?x is an Accord Wagon"

rule "CarRule12"
if "?x is a Honda"
 "?x has an aluminium body"
 "?x has only 2 seats"
then "?x is a NSX"
rule "CarRule13"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is stylish"
 "?x has several color models"
 "?x has a big engine"
then "?x is a Lamborghini Countach"
rule "CarRule14"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is red"
 "?x has a big engine"
then "?x is a Ferrari F50"
rule "CarRule15"
if "?x is a foreign car"
 "?x is a good face"
then "?x is a Jaguar XJ8"

Rules defined in the rule base file: CarShop

13

Forward Chaining-他の例

rules

14

Backward chaining

It is to start with something we want to prove, find implication sentences
that would allow us to conclude it, and them attempt to establish their
premises in turn. This is called backward chaining.

when a query q is asked

 if a matching fact q’ is known, return the unifier

 for each rule whose consequent q’ match q

 attempt to prove each premise of the rule by backward chaining

・与えられた仮説が、現在のアサーション集合において成り立つかど
うかを検証していく推論
・ゴールからスタートする、ゴールが事実の集合にあれば推論成功

ASK

15

Backward chaining example

Faster(Bob, Pat) Goal: to prove

Buffalo(x) Pig(y)

Buffalo(Bob) Pig(Pat)

{x/Bob}

{}

r1

{}

 {y/Pat}

 Bob is a buffalo | 1. Buffalo(Bob) --f1

 Pat is a pig | 2. Pig(Pat) --f2

 Buffaloes run faster than pigs | 3. ∀ x, y Buffalo(x) ∧ Pig(y) ⇒ Faster(x,y) --r1

Faster(x, y)

Buffalo(x) ∧ Pig(y)

R(2) – And Elimination

R(8) – Universal Elimination R(8) – Universal Elimination

rule "CarRule1"
if "?x is inexpensive"
then "?x is made in Japan"
rule "CarRule2"
if "?x is small"
then "?x is made in Japan"
rule "CarRule3"
if "?x is expensive"
then "?x is a foreign car"
rule "CarRule4"
if "?x is big"
 "?x needs a lot of gas"
then "?x is a foreign car"
rule "CarRule5"
if "?x is made in Japan"

 "?x has Toyota's logo"
then "?x is a Toyota"
rule "CarRule6"
if "?x is made in Japan"
 "?x is a popular car"
then "?x is a Toyota"

rule "CarRule7"
if "?x is made in Japan"
 "?x has Honda's logo"
then "?x is a Honda"
rule "CarRule8"
if "?x is made in Japan"
 "?x has a VTEC engine"
then "?x is a Honda"
rule "CarRule9“
if "?x is a Toyota"
 "?x has several seats"
 "?x is a wagon"
then "?x is a Carolla Wagon"
rule "CarRule10"
if "?x is a Toyota"
 "?x has several seats"
 "?x is a hybrid car"
then "?x is a Prius"
rule "CarRule11"
if "?x is a Honda"
 "?x is stylish"
 "?x has several color models"
 "?x has several seats"
 "?x is a wagon"
then "?x is an Accord Wagon"

rule "CarRule12"
if "?x is a Honda"
 "?x has an aluminium body"
 "?x has only 2 seats"
then "?x is a NSX"
rule "CarRule13"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is stylish"
 "?x has several color models"
 "?x has a big engine"
then "?x is a Lamborghini Countach"
rule "CarRule14"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is red"
 "?x has a big engine"
then "?x is a Ferrari F50"
rule "CarRule15"
if "?x is a foreign car"
 "?x is a good face"
then "?x is a Jaguar XJ8"

Rules defined in the rule base file: CarShop

17

Backward Chaining-他の例
rules

18

A Rule-base System Architecture

Rule Base Working Memory

Interaction with

Fire a Rule Select a Rule

Matching

Acting

Inference Engine

class WorkingMemory{} class RuleBase{}

class Rule{}

class Matcher{}

class
RuleBaseSystem{}

19

Rule-base System Examples
rule "CarRule1"
if "?x is inexpensive"
then "?x is made in Japan"

rule "CarRule4"
if "?x is big"
 "?x needs a lot of gas"
then "?x is a foreign car"

name

antecedents

consequent

public void addAssertion(String theAssertion){
 System.out.println("ADD:"+theAssertion);
 assertions.addElement(theAssertion);
 }

20

loadRules method

21

Rule-base System Examples (1)
public class RuleBaseSystem {
 static RuleBase rb;
 public static void main(String args[]){
 rb = new RuleBase();
 rb.forwardChain();
 }
}

22

23

matchable() Method

24

前向き推論の解説

はじめに

ソース内に出てくる変数名に使われている単語
は以下の意味がある

• Assertion ：わかっている知識(my-car is a wagon等)

• Antecedents：前件（ルールの条件,IFの部分）

• Consequent：後件(ルールから得られる結論, THENの部分)

• Bindings ：接合(知識と前件・後件の変数を結びつける)

前向き推論の途中まで
public void forwardChain() {
boolean newAssertionCreated;
// 新しいアサーションが生成されなくなるまで続ける．
do {
 // 新しいアサーションが生成されたかどうかを保存する変数
 newAssertionCreated = false;
 // ルールの数だけループ
 for (int i = 0; i < rules.size(); i++) {
 // ルールを取り出す
 Rule aRule = rules.get(i);
 // 取り出されたルールの表示
 System.out.println("apply rule:" + aRule.getName());
 // ルールの前件を取得
 ArrayList<String> antecedents = aRule.getAntecedents();
 // ルールの後件を取得
 String consequent = aRule.getConsequent();
 // バインディング情報の取得
 ArrayList<HashMap<String, String>> bindings = wm
 .matchingAssertions(antecedents);

CarRule1

"?x is inexpensive"

"?x is made in Japan"

?x=my-car

前向き推論の続き
if (bindings != null) {
 for (int j = 0; j < bindings.size(); j++) {
 // 後件をインスタンシエーション(変数にバインディング情報を当てはめる)
 String newAssertion = instantiate((String) consequent,bindings.get(j));
 // ワーキングメモリーになければ成功
 if (!wm.contains(newAssertion)) {
 System.out.println("Success: " + newAssertion);
 // 持っている知識に追加
 wm.addAssertion(newAssertion);
 newAssertionCreated = true;
 }
 }
}
}
System.out.println("Working Memory" + wm);
}
//全てのルールを見て１つでも知識が追加されたら、１から見直す
while (newAssertionCreated);
System.out.println("No rule produces a new assertion");
}

my-car is made in Japan

ワークングメモリーの中

my-car is inexpensive
my-car has a VTEC engine
:
my-car is made in Japan

matchingAssertionsメソッド

引数は、そのルールの前件で、ルールに含まれる変数を知識
と結びつけたものを返す

public ArrayList<HashMap<String, String>> matchingAssertions(
ArrayList<String> theAntecedents) {
 //変数と知識を結びつけた HashMapを保持するリスト
 ArrayList<HashMap<String, String>> bindings = new
 ArrayList<HashMap<String, String>>();
 return matchable(theAntecedents, 0, bindings);
}

Matchableメソッド
// 前件の数だけ繰り返す
if (n == theAntecedents.size()) {
 return bindings;
}
// １つ目
else if (n == 0) {
 boolean success = false;
 // わかっている知識の数だけループ
 for (int i = 0; i < assertions.size(); i++) {
 // バインディング情報を保持するハッシュマップ
 HashMap<String, String> binding = new HashMap<String, String>();
 // マッチングに成功
 if ((new Matcher()).matching(theAntecedents.get(n),assertions.get(i), binding)) {
 // バインディング情報をハッシュマップに追加
 bindings.add(binding);
 success = true;
 }
 }
 if (success) {
 return matchable(theAntecedents, n + 1, bindings);
 } else {
 return null;
 }

ルールの前件の数だけ持っている知識と繰り返
してマッチングを行いバインディング情報を返す

１個目のマッチング

• Matcherクラスのmatchingメソッドで知識と前
件の照合を行い、バインディング情報を得る

• 例：CarRule8

my-car is inexpensive

my-car has a VTEC engine

my-car is made in Japan
(CarRule1でわかった知識)

?x is made in Japan

マッチング成功！
?x = my-car

Matchableメソッド
else {
 boolean success = false;
 // バインディング情報を保持するハッシュマップ
 ArrayList<HashMap<String, String>> newBindings = new ArrayList<HashMap<String, String>>();
 // 得られたバインディング情報の数だけループ
 for (int i = 0; i < bindings.size(); i++) {
 // わかっている知識の数だけループ
 for (int j = 0; j < assertions.size(); j++) {
 // マッチングに成功
 if ((new Matcher()).matching(theAntecedents.get(n),assertions.get(j), bindings.get(i))) {
 // バインディング情報をハッシュマップに追加
 newBindings.add(bindings.get(i));
 success = true;
 }
 }
 }
 if (success) {
 return matchable(theAntecedents, n + 1, newBindings);
 } else {
 return null;
 }
}

前件が複数ある場合は、マッチン
グに既知のバインディング情報に
追加する

２個目以降のマッチング

• １個目の前件と知識の照合で得た?x=my-car
というバインディング情報も利用してマッチン
グ

my-car is inexpensive

my-car has a VTEC engine

my-car is made in Japan
(CarRule1でわかった知識)

?x has a VTEC engine

?x = my-car

これは１個目のマッチング結果と矛盾
が生じないのでマッチング成功

34

rule "CarRule1"
if "?x is inexpensive"
then "?x is made in Japan"

Rule "CarRule2"
if "?x is small"
then "?x is made in Japan"

rule "CarRule3"
If "?x is expensive"
then "?x is a foreign car"

rule "CarRule4"
if "?x is big"
 "?x needs a lot of gas"
then "?x is a foreign car"

Rule "CarRule5"
If "?x is made in Japan"
"?x has Toyota's logo"
then "?x is a Toyota"

rule "CarRule6"
if "?x is made in Japan"
 "?x is a popular car"
Ｔhen "?x is a Toyota"

rule "CarRule7"
if "?x is made in Japan"
 "?x has Honda's logo"
then "?x is a Honda"

rule "CarRule8"
if "?x is made in Japan"
 "?x has a VTEC engine"
then "?x is a Honda"

rule "CarRule9"
if "?x is a Toyota"
 "?x has several seats"
 "?x is a wagon"
then "?x is a Carolla Wagon"

rule "CarRule10"
if "?x is a Toyota"
 "?x has several seats"
 "?x is a hybrid car"
then "?x is a Prius"

rule "CarRule11"
if "?x is a Honda"
 "?x is stylish"
 "?x has several color models"
 "?x has several seats"
 "?x is a wagon"
then "?x is an Accord Wagon"

rule "CarRule12"
if "?x is a Honda"
 "?x has an aluminium body"
 "?x has only 2 seats"
then "?x is a NSX"

rule "CarRule13"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is stylish"
 "?x has several color models"
 "?x has a big engine"
then "?x is a Lamborghini Countach"

rule "CarRule14"
if "?x is a foreign car"
 "?x is a sports car"
 "?x is red"
 "?x has a big engine"
then "?x is a Ferrari F50"

rule "CarRule15"
if "?x is a foreign car"
 "?x is a good face"
then "?x is a Jaguar XJ8"

35

his-car is inexpensive
his-car has a VTEC engine
his-car is stylish
his-car has several color models
his-car has several seats
his-car is a wagon

Facts in Working Memory (WM):

36

% java RuleBaseSystem
% java RuleBaseSystem
ADD:my-car is inexpensive
ADD:my-car has a VTEC engine
ADD:my-car is stylish
ADD:my-car has several color models
ADD:my-car has several seats
ADD:my-car is a wagon
CarRule1 [?x is inexpensive]->?x is made in Japan
CarRule2 [?x is small]->?x is made in Japan
CarRule3 [?x is expensive]->?x is a foreign car
CarRule4 [?x is big, ?x needs a lot of gas]->?x is a foreign car
CarRule5 [?x is made in Japan, ?x has Toyota's logo]->?x is a Toyota
CarRule6 [?x is made in Japan, ?x is a popular car]->?x is a Toyota
CarRule7 [?x is made in Japan, ?x has Honda's logo]->?x is a Honda
CarRule8 [?x is made in Japan, ?x has a VTEC engine]->?x is a Honda
CarRule9 [?x is a Toyota, ?x has several seats, ?x is a wagon]->?x is a Carolla Wagon
CarRule10 [?x is a Toyota, ?x has several seats, ?x is a hybrid car]->?x is a Prius
CarRule11 [?x is a Honda, ?x is stylish, ?x has several color models, ?x has several seats, ?x is a wagon]->?x is an Accord Wagon
CarRule12 [?x is a Honda, ?x has an aluminium body, ?x has only 2 seats]->?x is a NSX
CarRule13 [?x is a foreign car, ?x is a sports car, ?x is stylish, ?x has several color models, ?x has a big engine]->?x is a Lamborghini
Countach
CarRule14 [?x is a foreign car, ?x is a sports car, ?x is red, ?x has a big engine]->?x is a Ferrari F50
CarRule15 [?x is a foreign car, ?x is a good face]->?x is a Jaguar XJ8
apply rule:CarRule1
Success: my-car is made in Japan
ADD:my-car is made in Japan
apply rule:CarRule2
apply rule:CarRule3
apply rule:CarRule4
apply rule:CarRule5
apply rule:CarRule6
apply rule:CarRule7

Output:

my-car is inexpensive

rule "CarRule1"
if "?x is inexpensive"
then "?x is made in Japan"

my-car is made in Japan

Initial facts in
the working

memory

A new fact added to the
working memory

37

apply rule:CarRule8
Success: my-car is a Honda
ADD:my-car is a Honda
apply rule:CarRule9
apply rule:CarRule10
apply rule:CarRule11
Success: my-car is an Accord Wagon
ADD:my-car is an Accord Wagon
apply rule:CarRule12
apply rule:CarRule13
apply rule:CarRule14
apply rule:CarRule15
Working Memory[my-car is inexpensive, my-car has a VTEC engine, my-car is stylish, my-car has several color
models, my-car has several seats, my-car is a wagon, my-car is made in Japan, my-car is a Honda, my-car is an
Accord Wagon]
apply rule:CarRule1
apply rule:CarRule2
apply rule:CarRule3
apply rule:CarRule4
apply rule:CarRule5
apply rule:CarRule6
apply rule:CarRule7
apply rule:CarRule8
apply rule:CarRule9
apply rule:CarRule10
apply rule:CarRule11
apply rule:CarRule12
apply rule:CarRule13
apply rule:CarRule14
apply rule:CarRule15
Working Memory[my-car is inexpensive, my-car has a VTEC engine, my-car is stylish, my-car has several color
models, my-car has several seats, my-car is a wagon, my-car is made in Japan, my-car is a Honda, my-car is an
Accord Wagon]
No rule produces a new assertion

my-car is inexpensive

rule "CarRule8"
if "?x is made in Japan"
 "?x has a VTEC engine"
then "?x is a Honda"

my-car is made in Japan

my-car is a Honda

rule “CarRule11"
if "?x is a Honda"
 "?x is stylish“
 "?x has several color models"
 "?x has several seats"
 "?x is a wagon"
then "?x is an Accord Wagon"

my-car is stylish
my-car has several color models
my-car has several seats
my-car is wagon

my-car is an Accord Wagon

A new fact added to
the working memory

A new fact added to
the working memory

38

Forward Chaining

39

 Bob is a buffalo | 1. Buffalo(Bob)

 Pat is a pig | 2. Pig(Pat)

 Buffaloes outrun pigs | 3. ∀ x, y Buffalo(x) ∧ Pig(y) ⇒ Faster(x,y)

--

 Bob outruns Pat

 Apply (3) to 1 And 2 | 4. Buffalo(Bob) ∧ Pig(Pat)

 Apply (8) to 3 {x/Bob, y/Pat} | 5. Buffalo(Bob) ∧ Pig(Pat) ⇒ Faster(Bob,Pat)

 Apply (1) to 4 And 5 | 6. Faster(Bob,Pat)

Exercise – AI programming
1. Input program RuleBaseSystem.java, and a rule-base file CarShop.txt
 understand them, run the program, and check the output.
2. Make some modifications to RuleBaseSystem.java
 (data file name: Outruns.data, rules in the data file, and
 writing the initial content (facts) in the working memory in a file, wm.txt)
 so that the program can run for the following case.

40

Output:

41

Write a report includes
- Front page (name, id)
- About the report

- exercise problem statement
- Where you make effort

- Source program
- Execution screen shot

The submission deadline: 2015/11/05

Home work

	�L6: Reasoning logically� - rule-based systems� (Applications of Forward- and Backward-chaining algorithms)
	Seven inference rules for propositional Logic
	The three new inference rules
	Example of proof (証明)
	Search with primitive (基本の) inference rules
	スライド番号 6
	Unify
	スライド番号 8
	スライド番号 9
	Forward chaining
	Forward chaining example
	スライド番号 12
	Forward Chaining-他の例
	Backward chaining
	Backward chaining example
	スライド番号 16
	Backward Chaining-他の例
	A Rule-base System Architecture
	Rule-base System Examples
	スライド番号 20
	Rule-base System Examples (1)
	スライド番号 22
	matchable() Method
	スライド番号 24
	前向き推論の解説
	はじめに
	前向き推論の途中まで
	前向き推論の続き
	matchingAssertionsメソッド
	Matchableメソッド
	１個目のマッチング
	Matchableメソッド
	２個目以降のマッチング
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	Forward Chaining
	Exercise – AI programming�1. Input program RuleBaseSystem.java, and a rule-base file CarShop.txt � understand them, run the program, and check the output. �2. Make some modifications to RuleBaseSystem.java � (data file name: Outruns.data, rules in the data file, and � writing the initial content (facts) in the working memory in a file, wm.txt)� so that the program can run for the following case.
	スライド番号 40
	スライド番号 41

